
Masterthesis

Optimizing
Software-based

Soft-Error Detector
Configurations

Robin Thunig
11th March 2022

Supervisors:
Prof. Dr.-Ing. Horst Schirmeier
Prof. Dr.-Ing. Peter Ulbrich

Technische Universität Dortmund
Fakultät für Informatik
Lehrstuhl 12
Arbeitsgruppe Eingebettete Systemsoftware
https://ess.cs.tu-dortmund.de

https://ess.cs.tu-dortmund.de

Abstract

Software developers often include additional code - so-called assertions - in their
software, which checks application-specific invariants at runtime and helps to find
programming errors. However, assertions can also detect errors that originate
from transient hardware faults in memory. Although such an assertion can reduce
the occurrence of silent data corruptions (SDCs) in the checked program state,
it also increases the runtime of the program and thus the attack surface of the
remaining program state. This tradeoff cannot be optimized for a nontrivial num-
ber of assertions by enumerating all possible assertion subsets and running a fault
injection (FI) campaign for each configuration. Therefore, the goal of this master
thesis is the development of a resource-saving method for optimizing assertion
configuration that exploits compositionality properties of susceptibility to faults
of program parts and requires only a single FI campaign. Based on the FI results
of the configuration with all assertions, unknown configurations are to be com-
puted first. Based on this - for a larger number of assertions N, for which even the
mere computation of all 2N configurations becomes impossible - it shall be invest-
igated how the interdependencies of the assertions can be utilized, which allows
the optimization of the configuration with integer linear optimization (ILP). The
method will be evaluated using the fault injection tool FAIL* and more complex
system software, such as the real-time operating system FreeRTOS and eCos. It is
shown that with this method for the evaluated programs an average improvement
of the fault tolerance of approximately 14% could be achieved in comparison to
the original program, in which all assertions are contained.

Contents
1. Introduction 1

1.1. Motivation and Background . 1
1.2. Thesis Structure . 2

2. Foundations 3
2.1. Fault Model . 3
2.2. Fault Metrics . 5

2.2.1. Fault Coverage . 5
2.2.2. Failure Probability . 6

2.3. FAIL* . 7
2.4. Assertions . 8
2.5. Conclusion . 9

3. Problem Description and Analysis 11
3.1. Existence of Assertions in Operating Systems 11
3.2. Effect of Assertions on Fault Tolerance 12
3.3. Prior Work . 17
3.4. Relation between Assertions . 19

3.4.1. Dependency through Redundancy 19
3.4.2. Dependency through Time Overlap 20

3.5. Conclusion . 22

4. Proposed Solutions 25
4.1. Calculating Configurations . 25
4.2. Optimizing Configurations . 27

4.2.1. Randomization . 27
4.2.2. Evolutionary Algorithms 28
4.2.3. Integer Linear Programming 29

4.3. Complexity Reduction . 31
4.3.1. Partition Assertions . 32

5. Realization and Implementation 39
5.1. DETOx . 39

5.1.1. Preparation . 39
5.1.2. Recording . 41

i

Contents

5.1.3. Profiler . 42
5.2. Embedded Operating Systems . 44

6. Evaluation 47
6.1. Evaluation of a Simple Program 47
6.2. Complex Software: Embedded Operating Systems 48

6.2.1. Case Study: FreeRTOS . 50
6.2.2. Case Study: eCos . 53

6.3. Influence of Non-Protected Application Data 64
6.4. Different Optimization Levels . 65
6.5. Limitations of the Approach . 66

7. Conclusion and Future Work 69
7.1. Conclusion . 69
7.2. Future Work . 71

Bibliography 73

List of Figures 75

List of Tables 77

A. Source Code I

ii

1. Introduction

1.1. Motivation and Background

Computers are usually assumed to always work correctly and predictably, as
defined in the program code. While this is generally correct, there may be in-
ternal and external influences that effect this assumption. Internal influences can
be undetected production errors, which become more likely as the structure size
of the chips becomes increasingly smaller. While external influences can be radi-
ation particles, which pass through the chips and lead for example to ionization in
the transistors. This could eventually cause the falsely activation of the transist-
ors. Especially if these errors occur only very rarely and the system architecture
is based on the assumption that exactly what is defined in the code will happen,
severe consequences can be the result. This can particularly be the case if it is a Si-
lent Data Corruption that is not detected by software or hardware. Consequently,
if data is silently changed, work continues with corrupted data, which can lead to
completely unforeseen results that can have catastrophic consequences.
These faults can be detected by hardware or software, if measures are imple-

mented. In hardware redundancy can be used, i.e. multiple processors, sensors,
etc. Such redundancy is applied, for instance, in airplanes, since the radiation
exposure at cruising altitude is significantly increased and the system is very
safety-critical. Another option is software-based hardware fault tolerance (SI-
HFT), in which faults are detected with the help of software. This variant can
also be integrated after the hardware is developed and produced and is therefore
also applicable for commercial off-the-shelf hardware.
Since redundant hardware is expensive to develop, SIHFT may be suitable for

cubesats that need to be lightweight and inexpensive or for low cost systems in
critical areas, such as a voting machine. This thesis will develop methods based
on SIHFT.

It will be considered to what extent fault tolerance can be improved by the
use of fault detectors. In this thesis the use of already existing assertions will be
examined in this regard. The basic assumption will be that assertions make the
code more fault tolerant, since injected faults in memory could be detected by
checking an assertion.

1

Introduction 1.2

1.2. Thesis Structure
At first the following chapter 2 explains the foundations necessary for the thesis.
This will involve explaining the fault model, fault metric, and fault injection tool
used. Then assertions in general will be discussed and it will be shown why
assertions might be suitable to improve fault tolerance.
In chapter 3 the use of assertions in the context of fault tolerance will be ex-

amined. In particular, the interdependence of assertions will be considered. Re-
quirements for the solution methods will be worked out.
Subsequently, in chapter 4 possible solution methods are presented, with which

the fault tolerance is to be maximized with the use of assertions.
In chapter 5 essential aspects of the implementation are discussed. These serve

among other things also for evaluation of the presented solution methods.
Subsequently, the presented solutions are evaluated on the basis of different

programs in chapter 6. Thereby also more extensive programs are considered,
which contain a variety of assertions.
Finally, in chapter 7 a summary of the thesis is given and an outlook on possible

future work is presented.

2

2. Foundations

In the following, some basics are explained that are necessary for the understand-
ing of the thesis. Chapter 2.1 deals with the fault model used in the thesis.
Subsequently, chapter 2.2 explains possible metrics that could be used for the
evaluation of fault vulnerability. Chapter 2.3 focuses on the fault injection tool
FAIL*, which is used for evaluation in this thesis. Finally, the functionality of
assertions used for error detection is discussed.

2.1. Fault Model
Due to ever smaller structures on computer chips, the susceptibility to electro-
magnetic radiation is also increasing. The thesis deals with this type of external
influence, which will therefore be described and defined in more detail.
The effect of electromagnetic radiation in the form of for example cosmic rays

results in the corruption of data or signals in a processor, memory or other com-
ponents of a computer. In figure 2.1 an alpha particle or neutron strike is visu-
alized. In this case, the particles lead to the ionization of the bulk substrate of a
MOSFET. The released electrons are then collected by the drain and activate the
transistor [8]. Such a distortion is also called a soft error or fault. It is charac-
terized by a change that is not permanent, but can be corrected [17]. However, it
does not occur systematically in the context of external radiation, but can hit any
point on computer components and generate an fault at that point. In addition,
it is assumed that such an event occurs so rarely that only one fault appears at a
time. This is also referred to as a single-event upset.
In this thesis the fault injection into memory is investigated. The fault model

is a single bit flip. This means that a single-event upset occurs in the memory,
i.e. the flip of a memory bit by an ionized radiation particle.
Such an event can lead to various outcomes for the program affected by it [17].

Some important ones are explained below:

• No Effect (OK): The program continues to run normally despite the fault
and the output of the program is not changed because, for example, the
fault occurs in a memory bit that is no longer read or that basically has no
influence on the result.

3

Foundations 2.1

Figure 2.1.: Alpha particle or neutrone creates a trail of ionized bulk substrate
atoms in a MOSFET. The electrons will be collected by the drain
and lead to an activtion of the transistor [17].

• Program Crash (TRAP): The program terminates prematurely with an
exception due to a trap triggered by a fault.

• Timeout (TIMEOUT): The program does not respond any more and
must be forced to terminate.

• Silent Data Corruption (SDC): The program does not recognize the
fault and continues to run without crashing or a timeout. However, the
result is corrupted.

• Fault is Detected (DETECTED): The injected fault is detected by the
program or a fault detection mechanism.

Program crash, timeout, or silent data corruption are called a failure and can be
catastrophic, depending on the application of the software. For example a SDC
was manually detected 2003 in a voting machine in Belgium after the flip of a
single bit resulted in 4 096 more votes for a single candidate. The fault was only
detected because the candidate got more votes than possible [18].
A fault can occur in any bit of memory at any point in time. For simplicity,

assume that instead of occurring at any time, a fault can occur after every CPU
cycle. This fault space of a program is visualized in Figure 2.2. It is spanned by
the used memory bits on the y-axis and the executed CPU cycles on the x-axis.
In Figure 2.3 the faultspace is shown after a fault was injected into each memory
bit after each CPU cycle. In the boxes, the result of an injection is visualized.
The faultspace contains the whole attack surface of a program. If it becomes

larger by a longer runtime or by more used memory, then the attack surface and

4

2.2 Foundations

Figure 2.2.: Representation of a fault space for program memory. On the y-axis
the memory bits are plotted and on the x-axis the CPU cycles ex-
ecuted until then. Each point visualizes a possible injected fault [17].

thus potentially the fault vulnerability increases. In the thesis, we consider how
this fact can affect the evaluation of fault tolerance methods.

2.2. Fault Metrics
In this section, the metrics used in the thesis are explained with which the de-
veloped methods will be evaluated. First, in section 2.2.1 a metric commonly used
in the literature [13] [14] [16] is explained and the problems arising from the use
of this metric are highlighted. Subsequently, in section 2.2.2 an alternative metric
is presented that avoids these problems.

2.2.1. Fault Coverage
The fault coverage c describes the probability that a fault injection does not lead
to a failure. [15] This is expressed by the following formula:

c = P (No Effect|1 Fault) = 1− P (Failure|1 Fault) (2.1)

The probability can be calculated from the proportion of the number of "No Effect"
results to the number of all fault injections. The number of "No Effect" results can
be determined from the difference of the number of failures F to the number of
all fault injections N , which are applied to a program. This calculation is shown

5

Foundations 2.2

Figure 2.3.: Representation of an injected fault space for program memory. On
the y-axis the memory bits are plotted and on the x-axis the CPU
cycles executed until then. Each box visualizes a possible result after
an injection at this point.

in the following formula:

c = 1− P (Failure|1 Fault) = 1− F

N
(2.2)

The problem with this metric is that it ignores the program runtime and the
amount of memory used by a program. This leads to the observation that pro-
grams evaluated with this metric may appear to improve as the runtime or used
program memory becomes larger. This increases the number of possible injections
N , but not necessarily the number of failures F . It becomes more clear when a
program is assumed to which only NOP instructions are added. However, this
increase of N has no effect on the failure behavior of the program and therefore
F does not increase. According to the fault coverage this leads to a better fault
tolerance even if the program has practically not changed.

2.2.2. Failure Probability
The failure probability [17] describes the probability P (Failure) that a failure
occurs in a program. That means this metric considers for a program how high
the probability is to produce a failure, if it is assumed that the program is exposed
to a continuous and constant particle stream over an arbitrarily large area, which
injects faults. The run time and size of the used program memory is considered
in this approach, since the program with larger runtime is exposed longer to the

6

2.3 Foundations

particle stream and with larger program memory a larger surface can be hit.
The following approximation can be derived while assuming a constant and low
fault rate and rather small programs, given that the goal is to compare the same
program [17]:

P (Failure) ∝ F (2.3)
Accordingly, in order to compare a program with its hardened version, it is ne-
cessary to compare the absolute number of failures. In particular, this thesis
examines the reduction of silent data corruptions.
This metric is closer to the result of a real radiation experiment than the fault

coverage metric and solves its fundamental problem of ignoring runtime and used
memory size.

2.3. FAIL*
To test systems for their susceptibility to faults, they can be exposed to real radi-
ation sources and the effects can be observed. However, this has the disadvantage
that it is not clear where the radiation particles strike in the system. Furthermore,
such an approach is generally not very practical. Therefore, it is more convenient
if the radiation effects or, more generally, the fault injections can be simulated
precisely. For this purpose the tool FAIL* (Fault Injection Leveraged) [17] is used
in this thesis. This tool is able to inject faults into single bits of registers and
memory. For further understanding, the process of a fault injection campaign will
be briefly explained:

1. Golden Run: The program is executed once and each access to memory
is traced. In addition, the output of the program is stored as ground truth,
which is later compared with the output of the injected program.

2. Fault space Pruning: It is utilized that it does not matter if an injection
takes place long before a memory area is read or shortly before. It is not
necessary to inject into this memory area before every CPU cycle if it is
known that the point in time until the next read of this area does not matter.
The fault space pruning takes this knowledge into account and reduces the
fault space for the injection to the necessary size.

3. Fault injection: In this step the fault injections are performed. Faults are
injected into each bit one after the other before every CPU cycle. After
each injection into exactly one bit at a time, the program is continued to be
executed and the effect is recorded.
To ensure the highest possible parallelism, a server distributes the fault
injection experiments to clients, which perform the experiments and send
the results back to the server.

7

Foundations 2.4

Figure 2.4.: Visualization of Fail*’s assessment-cycle.

4. Analysis: After all fault injections have been performed, the results of the
injections are filled into a database. On the basis of this database, the
information can be further processed. For example, the aggregated number
of SDCs can be read out or a fault space plot can be generated.

In figure 2.4 the just described procedure is visualized graphically.

2.4. Assertions
Assertions [2] can be used to ensure that certain conditions are guaranteed dur-
ing the program runtime. If the condition is no longer respected, the program is
terminated with an exception. The condition itself is usually defined by a pro-
grammer who wants to ensure that certain error states never occur. In addition,
assertions usually have the characteristic to be able to be switched on and off as
needed in whole, in order that no overhead results, if they should not be needed for
example in the productive application any more. In the following a short program
fragment with an assertion is shown:

int a = 3;
assert(a < 5);

In this section it is checked by an assertion whether the variable a, which should
have the value 3, is smaller than 5. This condition is to be fulfilled with each
program execution, otherwise the program is terminated with an exception. It
should be noted that an assertion usually triggers, i.e. terminates the program
with an exception message, if the condition to be checked is false.
This property of the check could be utilized for the detection of faults. If in

the program section described above a bit flip occurs in variable a and it changes

8

2.5 Foundations

to 7, for example, then the assertion would be able to detect this injected fault,
since a < 5 must hold.
The objective of this thesis is to investigate the use of assertions for fault de-

tection. One advantage of this idea is that existing assertions that programmers
have built into their code can be used. Such assertions can be found in most
larger software projects, for example in operating systems like the Linux kernel or
FreeRTOS.
A possible disadvantage could be the execution time required for the assertion

and therefore the larger attack surface. Furthermore, faults may only be detec-
ted in certain ranges of values. For example, in the example above, an error is
not detected if a changes to the value 1. In this thesis, these advantages and
disadvantages will be investigated and discussed.

2.5. Conclusion
In this chapter, the necessary basics for the thesis are explained. First the fault
model is specified, which is used in the context of this thesis. In addition, it is
described how the fault space is composed and how a fault injection into memory
can affect the program. Subsequently, the failure metrics used in the thesis are
discussed, which, depending on the choice, can fundamentally change the evalu-
ation of fault tolerance methods. Consequently, the failure probability is used in
this thesis, which does not assume the proportion of the occurring failures to all
fault injections, but includes both the vulnerability of memory over its size and
the program execution time. The probability of a fault is then proportional to
the number of SDCs. Afterwards, the functionality of FAIL* is explained, which
serves as a fault injection simulation tool for this thesis. Finally, it is described how
assertions can be used to detect faults. In particular, this thesis will investigate
how many SDCs are detected by assertions during fault injection.

9

3. Problem Description and
Analysis

This chapter examines how assertions can be used in the field of fault tolerance.
First, in section 3.1 it is considered how frequently assertions appear in certain
operating systems. Afterwards in section 3.2 it is examined how programs con-
sisting of different assertions can behave with respect to fault tolerance. After
that, section 3.3 explains the central prior work on which this thesis builds on,
as well as other papers that also deal with the topic of assertions in the area of
fault tolerance. To further analyze the effect of multiple assertions with respect
to fault tolerance, section 3.4 looks at the relations between assertions.

3.1. Existence of Assertions in Operating
Systems

This section shows how many assertions are already present in the source code of
selected operating systems. For the Linux kernel, its main subsystems (Process
Scheduler, Memory Manager, Virtual File System, Network Interface and Inter-
Process Communication) were scanned for known assertions.
For the search, an additional bracket is appended to the respective assertion

names and there may only be spaces, tabs or an open bracket in front of the name.
This ensures that the search using a regular expression only finds occurrences of
assertions that actually belong to the code and are not, for example a substring
from other assertions or are mentioned in a comment. The search command for
bash is then as follows:

$ egrep -r "(^|[[:space:]]|\t|\()+<assert-name>\("

The occurrence of a selection of frequent assertions in the Linux kernel is shown
in table 3.1. Using the same approach, table 3.2 shows the occurrences of the one
essential assertion of the FreeRTOS kernel and table 3.3 shows the occurrences
of all found assertions of the eCos kernel with more than ten occurrences. It can
be seen that a large number of assertions can be found within modern operating
systems as well. This fact is crucial for the improvement of fault tolerance of
these operating systems by the use of assertions, since in this thesis only already
existing assertions are to be considered.

11

Problem Description and Analysis 3.2

Assertion Name Occurrences
assert 116
BUG_ON 3031

BUILD_BUG_ON 704
WARN_ON 2968

assert_spin_locked 158
lockdep_assert_held 582

static_assert 93
ubifs_assert 465

Total 8117

Table 3.1.: Table of the occurrences of frequent assertions in the Linux Kernel.

Assertion Name Occurrences
assert 224

Table 3.2.: Table of the occurrences of the central assertion in the FreeRTOS Ker-
nel.

3.2. Effect of Assertions on Fault Tolerance
In section 2.4 it is explained that assertions are able to detect faults. When
increasing fault tolerance through assertions, it can also be utilized that a pro-
grammer has already implemented them and that they can be found in many
software projects, such as FreeRTOS or the Linux kernel. Since assertions can
detect faults, it is reasonable to assume that more assertions in a program always
make this program more fault tolerant. To disprove this assumption, a simple
example consisting of a quicksort algorithm with five assertions can be provided.
The algorithm is shown in listing 1 in C code. This quicksort algorithm is adapted
from the implementation of the qsort benchmark from the MiBench benchmark
suit [9]. Five assertions (assert1, assert2, assert3, assert4, assert5) are
used in this algorithm. To decide whether an assertion has a positive effect on
the program’s fault tolerance, the program is tried one by one with each possible
combination of assertions included in the program. An assertion can either be
active, i.e. it can occur and be executed in the program, or it can be inactive,
i.e. it can be removed from the program. A combination of active and inactive
assertions is called configuration in this thesis. A configuration is defined in the
following:

12

3.2 Problem Description and Analysis

Assertion Name Occurrences
CYG_ASSERT 1393
CYG_ASSERTC 279

CYG_CHECK_DATA_PTR 241
CYG_CHECK_FUNC_PTR 43
CYG_CHECK_DATA_PTRC 158
CYG_CHECK_FUNC_PTRC 43

CYG_ASSERTCLASS 156
CYG_ASSERTCLASS 156
CYG_ASSERTCLASSO 12
CYG_ASSERT_CLASSC 140
CYG_ASSERT_THISC 12
CYG_PRECONDITION 85
CYG_PRECONDITIONC 231
CYG_POSTCONDITION 24
CYG_POSTCONDITIONC 12
CYG_LOOP_INVARIANT 25
CYG_LOOP_INVARIANTC 26

CYG_PRECONDITION_CLASSC 274
CYG_LOOP_INVARIANT_CLASSC 64

CYG_PRECONDITION_ZERO_OR_CLASSC 19
CYG_PRECONDITION_THISC 482
CYG_POSTCONDITION_THISC 62

CYG_INVARIANT 11
CYG_INVARIANTC 11

CYG_INVARIANT_CLASSC 15
CYG_INVARIANT_CLASSOC 15
CYG_INVARIANT_THISC 24
CYG_ASSERT_DOCALL 34

CYG_FAIL 249
Total 4489

Table 3.3.: Table of the occurrences of all found assertions in the eCos Kernel with
more than ten occurrences in the source code.

13

Problem Description and Analysis 3.2

1 void quicksort(char data[], int begin, int end) {
2 assert1(data != 0);
3 if (end > begin) {
4 int pivot = begin;
5 int l = begin + 1;
6 int r = end;
7 while(l < r) {
8 if (data[l] <= data[pivot]) {
9 l += 1;

10 } else if (data[r] > data[pivot]) {
11 r -= 1;
12 } else {
13 swap(data+l, data+r);
14 /* check if swapped elemnts have the right order
15 in regard to the pivot element */
16 assert2(data[l] <= data[pivot] && data[pivot] <= data[r]);
17 }
18 assert3(l <= r);
19 }
20 l -= 1;
21 assert4(data[l] <= data[pivot]);
22 swap(data+pivot, data+l);
23 sort(data, begin, l);
24 sort(data, r, end);
25 }
26 }
27

28 void sort(char data[], input_data_length) {
29 quicksort(input_data, 0, input_data_length - 1);
30 // check if complete array is sorted
31 assert5(is_sorted(input_data, input_data_length));
32 }

Listing 1: Code of a quicksort algorithm, which is based on the qsort benchmark
from the MiBench benchmark suit [9]. There are five assertions in the
code that check in different ways whether a fault has been injected into
the variables protected by the assertions.

14

3.2 Problem Description and Analysis

Definition 3.2.1 (Configuration)
A configuration comprises the states s of all considered n assertions of a pro-
gram and is of the form [s1, ..., sn]. There are two possible states. Either an
assertion is active, thus is evaluated in the program. This state is called 1.
Or an assertion is inactive, is accordingly taken out of the program and is not
executed. This state is denoted by 0.

A configuration for the quicksort algorithm of the type [1, 0, 0, 0, 0] mentioned
above would mean that the assertion assert1 would be executed in the program
and any other assertion would be taken out and will not be executed. When the
configuration is applied to the program, it is possible to determine, for example,
how many SDCs are the result of an fault injection campaign for the program.
In the following we will define what is meant by an optimal configuration in

this thesis:

Definition 3.2.2 (Optimal Configuration)
An optimal configuration describes the configuration of a program that min-
imizes the number of SDCs when performing a fault injection campaign.

Table 3.4 shows how many SDCs are evaluated for each possible configuration of
assertions of the Quicksort algorithm. It can be seen that not the configuration
with maximal number of assertions leads to the lowest number of SDCs, but the
configuration [0, 0, 0, 0, 1] is the optimal configuration in this case. This means
that in order to obtain the lowest number of SDCs, the assertion assert5 must
be activ and executed in this quicksort algorithm and all other assertions must be
inactiv.
The above example shows that there is no trivial relation between the choice

of assertions and the lowest number of SDCs. It is shown experimentally that for
two different programs two different optimal configurations can be the result.

In order to determine the reason why the relation between assertions and fault
tolerance does not follow a simple rule, assertions will first be considered in isola-
tion from each other.
In principle, it has already been shown in section 2.4 that an assertion is able to

detect faults and therefore reduce the number of SDCs. However, it must also be
considered that the assertion must be executed and adds instructions and runtime
to the program that would otherwise not be part of it. If faults are injected before
each of these instructions, additional SDCs can be added to the program at these
points. In addition, during the execution of the instructions of this assertion, the
entire memory is injected and in particular also the memory, which is not proteced
by the assertion. A short code example to illustrate this is shown below:

15

Problem Description and Analysis 3.2

[assert1, assert2, assert3, assert4, assert5] SDCs
[0, 0, 0, 0, 1] 667 792
[1, 0, 0, 0, 1] 688 507
[0, 0, 0, 1, 1] 701 957
[0, 1, 0, 0, 1] 697 033
[0, 0, 1, 0, 1] 703 802
[1, 0, 0, 1, 1] 704 466
[1, 1, 0, 0, 1] 707 584
[1, 0, 1, 0, 1] 715 638
[0, 1, 0, 1, 1] 726 452
[0, 0, 1, 1, 1] 720 954
[0, 1, 1, 0, 1] 722 079
[1, 1, 0, 1, 1] 730 459
[1, 0, 1, 1, 1] 735 990
[1, 1, 1, 0, 1] 741 354
[0, 1, 1, 1, 1] 744 953
[1, 1, 1, 1, 1] 755 252
[0, 0, 0, 1, 0] 1 568 798
[0, 0, 0, 0, 0] 1 539 162
[1, 0, 0, 1, 0] 1 592 419
[1, 0, 0, 0, 0] 1 606 692
[0, 1, 0, 1, 0] 1 613 835
[0, 1, 0, 0, 0] 1 606 239
[0, 0, 1, 1, 0] 1 626 834
[1, 1, 0, 1, 0] 1 650 336
[1, 1, 0, 0, 0] 1 639 217
[0, 0, 1, 0, 0] 1 638 825
[1, 0, 1, 1, 0] 1 647 153
[0, 1, 1, 1, 0] 1 670 647
[1, 0, 1, 0, 0] 1 679 553
[0, 1, 1, 0, 0] 1 672 429
[1, 1, 1, 1, 0] 1 702 363
[1, 1, 1, 0, 0] 1 714 920

Table 3.4.: Table with the occurrences of SDCs of a quicksort algorithm with five
assertions and correspondingly 32 possible configurations.

16

3.3 Problem Description and Analysis

bool a = true;
bool b = false;
bool c = true;
someWorkload(); // executes some unrelated workload
assert(a);

In this example, the variable a is checked by an assertion after a workload is
executed that does not read or write memory as to not interfere with the rest of
the program. In addition, there are also variables b and c that are not protected
by an assertion. If faults are injected into variable a, these are detected by the
assertion and at this point the assertion reduces the number of SDCs. At the
same time, no faults are detected that are injected into variable b or c. When
the assertion is executed, it then increases the attack surface for b and c during
the execution time of the assertion. In addition, SDCs are caused when injecting
into the memory area of a when executing instructions of the assertion that are
located after a has been checked. In these cases, additional SDCs are added by
assertion at this point.
Figure 3.1 provides an additional visualization of this example. Here, the SDCs

detected by the assertion are shown in solid green and the additional SDCs that
would not have occurred without the assertion are shown in solid red. It can be
seen that the benefit of an assertion is also related to the size of the memory used
for the injection. The larger the memory, the less the benefit of an assertion can
be, since the additional runtime increases the attack surface in the entire memory
area used.
When an assertion is considered in isolation, it is now possible to decide whether

the assertion increases or decreases the total number of SDCs by comparing the
area of detected SDCs with that of the additional SDCs of the assertion. If the
number of detected SDCs is larger, the assertion decreases the number of SDCs
and should be activated. Accordingly, the assertion should be disabled if the
number of detected SDCs is smaller. In the following sections, further reasons will
be explained that explain why assertions have different cost-benefit ratios and
how they are connected to each other. In particular, it will be discussed whether
assertions can be considered in isolation, as assumed in the previous section.

3.3. Prior Work
The problem investigated in section 3.2, that an optimal configuration does not
simply contain as many active assertions as possible, is already explained in the
paper by Lenz and Schirmeier [10]. It recognizes that while an assertion detects
faults in memory areas protected by it, at the time of execution other areas of
memory become more vulnerable as the program becomes a larger runtime. In the

17

Problem Description and Analysis 3.3

Figure 3.1.: Representation of a fault space for variable a, b and c with one as-
sertion. On the y-axis the memory bits of the variables are plotted
and on the x-axis the CPU cycles executed until then. The results for
a fault injection are plotted in color for each point. Transparent red
represents the occurrence of SDCs in a program that would appear
independent of the assertion and solid red the occurrence of addi-
tional SDCs in a program if the assertion is included. In solid green
the SDCs are marked, which are detected by the assertion and reduce
the total number of SDCs. Detected SDCs are marked in transparent
green, which are also detected by the assertion, but would not have
occurred without the assertion and therefore do not change the total
number of SDCs.

18

3.4 Problem Description and Analysis

paper this is called attack-surface tradeoff. It also states that for a program with
N assertions, there are 2N possible configurations. This quickly leads to the prob-
lem that not all configurations can be executed individually, since for example for
100 assertions 2100 ≈ 1030 configurations would have to be tried in order to find the
optimal configuration. In the conclusion of the paper it is therefore proposed to
use optimization methods that are able to find the optimal configuration with the
least possible effort. Genetic algorithms or integer-linear programming are sug-
gested as possibilities. This thesis will continue the work of Lenz and Schirmeier
and investigate the optimization methods proposed in the paper. It will also be
analyzed to what extent the complexity of the optimization issue, prior to the
application of an optimization procedure can be reduced. In a preliminary work
of Lenz and Schirmeier it was found that even with an optimization method like
integer-linear programming, finding an optimal configuration for many assertions
can take a lot of time. In order to develop a method that reduces the complexity
in advance, the following sections analyze the dependencies between assertions
with respect to fault tolerance in more detail. The goal is to be able to include
the knowledge about these dependencies already in the optimization procedure
and thus to reduce the complexity of the optimization problem.

3.4. Relation between Assertions
In section 3.2, it is experimentally demonstrated that more assertions do not
automatically lead to fewer SDCs in a fault injection campaign. Any configuration
of assertions could potentially be the optimum when the programs are considered
without prior knowledge about them. It is also shown that one of the reasons
for this may be the additional instructions required for the assertion, which may
result in additional SDCs that would not have appeared without the assertion. In
this section, the dependencies between assertions with respect to the avoided and
additional SDCs will also be addressed.

3.4.1. Dependency through Redundancy
Firstly, we will discuss the dependency of assertions that occurs when two as-
sertions protect the same memory area. This dependency is called dependency
through redundancy in this thesis. The following code can be given as an example:

bool a = true;
bool b = true;
someWorkload(); // executes some unrelated workload
assert1(a && b);
someWorkload(); // executes some unrelated workload
assert2(a);

19

Problem Description and Analysis 3.4

In this code, variable a and b exist, where injected faults in variable a and b
are detected by assert1. Additionally injected faults in variable a are detected
by assert2. To create execution time before assertions, a workload is again
created that does not read or write memory. Figure 3.2 visualizes this example
in a faultspace. It can be seen that there is an overlap for the SDCs detected
by the assertions. In this case, assert2 detects SDCs injected into variable a
that are also detected by assert1. Thus, there exists some redundancy in the
detection of assertions. If it is assumed that assert1 would only protect the
memory area of variable a, this assertion would clearly be redundant, since all
SDCs in a are also detected by assert2. assert1 would in this case only add
additional SDCs by its own execution and would have to be disabled in an optimal
configuration. assert1, however, also protects the memory of variable b in this
example. This leads to the consequence that this assertion can potentially reduce
the number of SDCs. It can be concluded that mutually redundant assertions must
be considered together, since they partially detect the same SDCs and therefore it
is no longer correct to consider the cost-benefit ratio individually. In addition, a
solution how to choose the optimal configuration for partially redundant assertions
is not directly obvious, as shown in the example. The benefit of an assertion
outside the redundantly monitored SDCs can justify the activation in an optimal
configuration.

3.4.2. Dependency through Time Overlap
After showing in the previous section that assertions can be in interdependency
if they protect the same or partly the same memory area and detect the same
SDCs in it, in this section it will be considered to what extent assertions can be
dependent on each other even if they do not overlap in the protected memory area.
The dependency occurs through temporal overlap of the executed instructions of
an assertion and the increased attack surface in memory areas that are protected
by other assertions. This dependency is called dependency through time overlap
in this thesis. The following code example can be given as an example of such a
dependency:

bool a = true;
bool b = true;
someWorkload(); // executes some unrelated workload
assert1(a);
someWorkload(); // executes some unrelated workload
assert2(b);

Variable a is protected by assertion assert1 and variable b is protected by asser-
tion assert2. Since no redundancy is included here, i.e. the assertions do not
protect overlapping memory areas, it could be assumed that these assertions could

20

3.4 Problem Description and Analysis

Figure 3.2.: Representation of a fault space for variable a and b with assertions
assert1 and assert2. Again the y-axis the memory bits of the vari-
ables are plotted and on the x-axis the CPU cycles executed until
then. The results for a fault injection are plotted in color for each
point. Transparent red represents the occurrence of SDCs in a pro-
gram that would appear independent of the assertion and solid red
the occurrence of additional SDCs in a program if the assertion is
included. In solid green the SDCs are marked, which are detected by
the assertion and reduce the total number of SDCs. Detected SDCs
are marked in transparent green, which are also detected by the asser-
tion, but would not have occurred without the assertion and therefore
do not change the total number of SDCs.

21

Problem Description and Analysis 3.5

be considered independently. Figure 3.3 visualizes the example in faultspace. It
can be seen that executing assert1 would add additional SDCs in the memory
space protected by assert2. This results in the problem that these additional
SDCs are detected if assert2 is activated and accordingly they are not con-
sidered negatively in the cost-benefit analysis of assert1. However, if assert2 is
disabled, then these additional SDCs must be considered. So whether assert1 is
an assertion that must be active in the optimal configuration depends on whether
assert2 is active or not. At the same time, it is not necessarily possible to make
a general decision for assert2 whether it should be enabled, since it may be re-
lated to other assertions or may also increase the attack surface in the memory
space of assert1 with its own instructions. Accordingly, assertions must also be
considered in this temporal context and must be considered together for finding
the optimal configuration.

3.5. Conclusion
This chapter experimentaly shows, using a quicksort algorithm, that for an op-
timal configuration, there are not necessarily as many active assertions as possible.
Subsequently, the causes are discussed. Central to this is that an active assertion
adds instructions to the program, which increases the attack surface of the pro-
gram over the entire considered memory space. This could cause an assertion to
lead to more additional SDCs than it can detect.
Furthermore, assertions also depend on each other when it comes to finding

an optimal configuration. The dependency through redundancy is of importance
where assertions partially protect the same memory area and can therefore have
a lower benefit in conjunction with the other assertion. In addition, dependency
through time overlap must also be considered. Here, the instructions of one asser-
tion increase the attack surface in a protected memory area of another assertion.
It depends whether this other assertion is active and therefore the increased at-
tack surface does not play a role, since SDCs are detected in this area or whether
it is inactive and the additional SDCs from this memory area must be included
accordingly.
Assertions must be considered in context of fault tolerance under the aspects just

mentioned. This makes the search for the optimal configuration more complex,
since it is not possible to decide for each assertion in isolation whether it should be
part of an optimal configuration as an active assertion. In the following chapter it
is to be examined, how this can be considered and still an optimal configuration
can be found efficiently.

22

3.5 Problem Description and Analysis

Figure 3.3.: Representation of a fault space for variable a and b with assertions
assert1 and assert2. Again the y-axis the memory bits of the vari-
ables are plotted and on the x-axis the CPU cycles executed until
then. The results for a fault injection are plotted in color for each
point. Transparent red represents the occurrence of SDCs in a pro-
gram that would appear indipendant of the assertion and solid red
the occurrence of additional SDCs in a program if the assertion is
included. In solid green the SDCs are marked, which are detected by
the assertion and reduce the total number of SDCs. Detected SDCs
are marked in transparent green, which are also detected by the asser-
tion, but would not have occurred without the assertion and therefore
do not change the total number of SDCs.

23

4. Proposed Solutions
This chapter proposes possible solutions that could determine the most optimal
configuration of assertions. Section 4.1 first explains how, with respect to the
number of SDCs, further configurations can be calculated from a known configur-
ation of assertion. Then in section 4.2 possible solutions for finding the optimal
configuration of assertions are discussed. Finally, in section 4.3, the reduction of
the complexity of the optimization problem is investigated.

4.1. Calculating Configurations
In chapter 3 it is shown that a configuration of assertions that minimizes the
number of SDCs does not only consist of as many active assertions as possible.
Rather, it is an optimization problem to find such an optimal configuration, since
the assertions are interdependent.
One way to find this optimal configuration is to execute and record all possible

configurations. However, the execution of a configuration can take several hours,
which for a program with 20 assertions, i.e. 220 ≈ 1, 000, 000 configurations, would
already take several decades. Therefore, it is desirable that the configurations do
not actually require to be executed.
The possibility to calculate the number of SDCs that occur for a program for a

given configuration of assertions is provided by the work of Lenz and Schirmeier
[10]. In this paper the tool DETOx is presented. It is able to compute the
number of SDCs for an arbitrary configuration from a recording of a fault injection
campaign in which all assertions are active. Thereby, as described in section 2.3,
a fault injection campaign consists of the uncorrupted execution of the program
with the tracing of all memory accesses and the ground truth of the output (golden
run), then the reduction of the fault space that is injected (faultspace pruning)
and finally the injection into every single bit of the fault space before every CPU
cycle (fault injection). In DETOx the last step fault injection is extended, so that
after each injection it is also recorded which assertions in the subsequent program
flow were triggered by the injection, while the program is not terminated by the
assertion. In addition, the result type (OK, SDC, TIMEOUT, TRAP) is recorded.
In figure 4.1 this recording is graphically illustrated. Here, for each bit before each
CPU cycle, it is recorded which assertions are triggered by an injection at that
point. For example, an injection into bit1 before CPU cycle 3 will trigger assertion

25

Proposed Solutions 4.1

Figure 4.1.: Representation of an fault space for an example program with asser-
tions triggered by an injection. The memory bits are plotted on the
y-axis and the CPU cycles executed up to that point are plotted on
the x-axis. Each point represents a possible injected fault. Each box
represents a possible injected fault with the assertions triggered by
that point.

a1 and a2 during further program execution.
According to these records, it can be determined which memory areas are

covered by an assertion at which CPU cycles. Using this information, any config-
uration of assertions can be calculated for the program. For these configurations
it can be determined, how large the number of the respective result types (OK,
SDC, TIMEOUT, TRAP) would be, if these were applied to the corresponding
program and if it would be executed. In this thesis, such calculated configurations
are called synthetic configurations. In the following these are defined:

Definition 4.1.1 (Synthetic Configuration)
A synthetic configuration describes a configuration that is not actually executed
for the corresponding program, but for which the expected result types (OK,
SDC, TIMEOUT, TRAP) can be calculated.

This calculation will be explained using figure 3.1 from section 3.2. DETOx is able
to determine how many SDCs are detected by an assertion, which is illustrated
by the area in solid green in the figure. This information comes from recording
which assertions are triggered by which injection. In addition, DETOx can detect
the additional SDCs added by the assertion execution, illustrated in solid red in
the figure. For this, the dynamic instructions of an assertion are determined and
all injections that lead to an SDC in this interval over the whole used memory

26

4.2 Proposed Solutions

are aggregated. For the calculation of the number of SDCs of a configuration, it
is also necessary to know the original total number of SDCs, which is determined
during the run with all assertions in the active state. When an assertion a is
then supposed to be inactive from the original recorded configuration where all
assertions are active, all occurrences of a in the record has to be removed. That
means for every single injection that includes a, it has to be deleted for this
injection. Therefore it appears that a never existed in the record. After that the
number of SDCs SDCwithouta has to be recalculated from the record. Additionally
the dynamic instructions da of the assertion itself has to be removed. This is done
by the following formula:

SDCnew = SDCwithouta − da (4.1)

Now exactly assertion a is inactive in the synthetic configuration and would be
producing SDCnew SDCs. If another assertion should be inactive, the same pro-
cedure can be used as often as desired for every assertion in a series.

4.2. Optimizing Configurations
In this section, possible optimization methods are presented. For this we first
consider the possibility of randomized selection of assertions in section 4.2.1. Sub-
sequently, in section 4.2.2 and 4.2.3 possible optimization methods are examined,
which could be suitable for finding an optimal configuration of assertions.

4.2.1. Randomization
In the previous section it is shown that with higher number of assertions not
all configurations can be executed individually. This problem can be mitigated
by calculating configurations. However it would not be possible to calculate all
configurations for example over 2100 Assertions, as available in FreeRTOS. there-
fore a solution must be found, where not each configuration has to be considered
individually.
A variant is the omitting of computations. Only randomly selected configur-

ations in a manageable number are computed. However, with this method the
search space is probably insufficiently searched, which does not lead to the desired
optimum. This can be illustrated with the consideration that 216 computations
can still be feasible given that they take about eight days on modern hardware 1.
However, since the total search space can be, for example, 2100 configurations in
size, only 5.26 · 10−28% would be covered. Even with significant improvements in

1From experiments it is known that the time to calculate one configuration for example with
around 100 assertions needs around 10 seconds. Therefore the time needed to calculate 216

configurations is 216 · 10s = 655 360s which is about eight days.

27

Proposed Solutions 4.2

the efficiency of the calculation, the coverage would remain extremely low. The
probability that the optimal configuration, or a close one, is among those ran-
domly selected is low, unless special unjustifiable assumptions can be made about
the search space.
Therefore, although randomization is used in the evaluation in chapter 6.2, it

is generally of limited use to reliably find a configuration close to the optimum or
even an optimal configuration.

4.2.2. Evolutionary Algorithms
One possibility to find the optimal configuration of assertions could be the use of
an evolutionary algorithm [4]. The aim is to imitate the functioning of natural
evolution. Such an algorithm is in principle able to find local optima in an ar-
bitrary search space, which would accordingly also be applicable to the present
problem of finding an optimal configuration of assertions.
The basic procedure for finding an optimal configuration of assertions could

be to first generate a population of random configurations. This population rep-
resents the first generation of the algorithm. Then, each configuration of the
population would be evaluated by calculating the corresponding number of SDCs.
The number of SDCs is the fitness value of a configuration. Based on this fitness
value, the best configurations of a population are selected and are recombined in
the subsequent step, for example, by randomly exchanging the individual states
of the assertions between the configurations. Subsequently, the configurations res-
ulting from the recombination are mutated. In this process, individual states of
the assertions in a configuration are switched randomly to active or inactive. The
resulting new population is then the second generation. Now the configurations
are evaluated again and the process starts from the beginning. The process ends
when a termination criterion is reached. This can be, for example, the passing of a
certain improvement of the fitness value between two successive generations. This
can be a sign that the algorithm is approaching a local optimum, i.e. that it has
found a configuration that returns a number of SDCs close to a local optimum.
With an evolutionary algorithm, it is possible to find configurations that are

close to local minima with respect to number of SDCs, or if the parameters of
the algorithm are chosen correctly, even the global minimum. However, the de-
termination of these parameters is laborious and would require an experimental
search of them. In addition, the parameters would then only be safely suitable
for the program for which they were optimized. In addition, convergence to a
local minimum is typically slow and further complicates the determination of the
parameters.
Accordingly, it would be desirable if already known properties could be exploited

by determining the number of SDCs for a configuration. Since an evolutionary
algorithm does not know the characteristics of the search space, it is not well suited

28

4.2 Proposed Solutions

if a solution should be found in a short time. In the following sections it will be
shown how the calculation process of the number of SDCs for a configuration can
be used to determine an optimal configuration.

4.2.3. Integer Linear Programming
Since the solution idea presented so far in the previous section cannot quickly and
reliably lead to the optimal configuration, this section investigates finding this
optimal configuration using Integer Linear Programming (ILP). It will be briefly
explained how this method works. The following is based on the book "Linear and
nonlinear programming" from Luenberger et al. [12] and the preliminary work of
Lenz and Schirmeier.
The goal of Integer Linear Programming is to minimize a cost function that

is linear in its unknowns under linear equality and inequality constraints. In
addition, all variables must be integers. Formally, a standard form of an Integer
Linear Program can be given:

minimize
n∑

i=1
cixi

subject to
n∑

i=1
a1ixi = b1

...
n∑

i=1
amixn = bm

and x1 ≥ 0, ..., xn ≥ 0.

Here b ∈ Rm is an m-dimensional vector and c ∈ Rn is an n-dimensional vector
of real numbers. A ∈ Rm×n is a m × n matrix. The values in b, c and A are
constants and part of the description of the given problem. The vector x ∈ Nn

contains the variables to be determined in the optimization of the Integer Linear
Program. The variables in x can only take positive integer values. To determine
a solution for the ILP, different classes of algorithms can be used, such as the
cutting plane method or the branch and cut method. Since an ILP is NP-hard,
heuristic methods must also be used to some extent. Since state-of-the-art ILP
solvers can choose from many of these methods, depending on the characteristics
of the ILP, this thesis will not discuss specific solution methods in detail.
To create an Integer Linear Program for finding the optimal configuration,

known properties of the optimization problem from section 4.1 can be used. It
is explained how the number of SDCs of a configuration can be calculated. Ne-
cessary for this is the knowledge about how many SDCs da are detected by an
assertion a. Furthermore, it is also known how many SDCs oa additionally occur

29

Proposed Solutions 4.2

by the execution of the assertion. The difference s of detected and additional SDCs
then describes the total reduced number of SDCs, if the assertion is considered in
isolation:

sa = da − oa (4.2)
Since an assertion a can be either active or inactive, it is a ∈ {0, 1}, where 0
represents an inactive assertion and 1 represents an active one. If an assertion a
is active, then sa shall be included in the equation to be optimized, and if this
assertion is inactive, then sa shall not be included. This results in the following
term:

sa · a (4.3)
However, it must also be noted that assertions cannot be considered independently
of each other. If several assertions occur, the redundantly detected SDCs rAr must
be added, if one the assertions Ar = {al, ..., ak} are active. To achieve the selection
when more than on assertion is active. The following term can be used:

(1−
∏

a∈Ar

(1− a)) (4.4)

This results in the following term for the selection of the redundant SDCs:

rAr · (1−
∏

a∈Ar

(1− a)) (4.5)

The combining of the terms 4.3 and 4.5 with the extension to any number of
assertions A = {a1, ..., an} is shown in the following, where M contains the set of
all redundant occurrences of assertions:∑

a∈A

a · sa +
∑

Ar∈M

rAr · (1−
∏

a∈Ar

(1− a)) (4.6)

The resulting term describes the total number of reduced SDCs depending on
the state of the assertions in A. This term is the cost function of the proposed
ILP, which should be maximized for the highest possible number of reduced SDCs
subject to the variables in A. From these variables, the optimal configuration
[a1, ..., an] is obtained after optimization.
The constraints are defined in a first approach as follows:

a1 ≤ 1
...

an ≤ 1

The idea is to take into account that an assertion a can only be active or inactive
and a ∈ {0, 1} applies. However, it is noticeable that the cost function 4.6 is not

30

4.3 Proposed Solutions

linear in its variables because of term 4.5. Products of variables can be present.
Since only binary decision variables occur in this problem, the problem can still be
linearized with cleverly chosen linearization rules. For each product ∏l

i=k ai a new
variable zj is introduced, which is representing this product. For each variable zj

the following linearization rules must then be added [6]:

zj ≤ ai for i = k, ..., l

zj ≥ (
l∑

i=k

ai)− (l − 1)

These linearization rules cause the representation of the product zj to be 1 only if
all factors ak, ...al are also 1, otherwise zj is 0. This matches the desired behavior.
An additional optimization target should be the number of activated assertions.

The fewer assertions a program contains, the faster it can be executed. There-
fore, the number of active assertions in a configuration should be minimized. For
this, the cost function from 4.6 must be adapted. Each variable can be subtrac-
ted from the cost function, so that many active assertions would make the cost
function smaller compared to many inactive assertions. However, this makes the
cost function ambiguous. Therefore, it has to be multiplied by the number of all
variables beforehand so that there are enough non-ambiguous places for the added
variables. The resulting cost function is shown in the following:

maximize n · (
∑
a∈A

a · sa +
∑

Ar∈M

rAr · (1−
∏

a∈Ar

(1− a)))−
∑
a∈A

a (4.7)

It can be shown that to determine an optimal configuration, an ILP can be
designed. Accordingly, since an ILP can be solved exactly, the optimal config-
uration can be found reliably if solving the ILP is done in a reasonable amount
of time. Furthermore, it is not entirely certain whether the calculation method
from section 4.1 used as a basis for the ILP leads to a robust result when those
are compared with real configurations that have been executed in reality. These
questions will be examined in more detail in the evaluation in chapter 6.

4.3. Complexity Reduction
In this chapter, it will be investigated how the optimization problem can be sub-
divided into smaller subproblems that can presumably be solved in a shorter time.
These subproblems could then be solved one after the other, for example by In-
teger Linear Programming, and combined to an overall optimum. In section 4.3.1
it will be considered how partitions of different assertions can be formed, which
allow to optimize only a selection of assertions. It has to be ensured that the
optimum found by this method does not differ significantly from the original one,
where all assertions are included in the optimization at the same time.

31

Proposed Solutions 4.3

4.3.1. Partition Assertions
In this section it is described how the assertions occurring in a program can
be partitioned so that the optimization problem can be simplified. In section
4.3.1.1 the properties of a partition are defined and assumptions are made to
justify that such a partitioning can be legitimate. Afterwards, in section 4.3.1.2,
4.3.1.3 and 4.3.1.4 examines how to handle dependencies between assertions in
order to partition them correctly. In section 4.3.1.5, heuristics are proposed to
enable further partitioning. Finally, in section 4.3.1.6 the collected findings are
summarized.

4.3.1.1. Definitions and Assumptions

In the following a partition is defined:

Definition 4.3.1 (Partition)
A partition contains different disjoint assertions which have a relation to each
other with respect to the fault tolerance. A partition is of the form {ak, ..., al}
with the assertions ak, ..., al.
In another representation of a partition, it also includes the occurrences of
the corresponding assertions of the partition. The number of occurrences cor-
responds to the number of injections that trigger the corresponding assertions.
Such a partition is of the form {ak × nak

, ..., al × nal
} with the assertions

ak, ..., al and the respective occurrences of these assertions in the partition
nak

, ..., nal
.

The idea in partitioning is to reduce the complexity of the optimization problem.
This exploits the fact that 2n > 2k + ... + 2l for k + ... + l = n and k ≥ 1, ..., l ≥ 1
holds. Which means that the number of configurations 2n for n assertions is always
greater than the summed number of all configurations of the respective partitions.
Accordingly, fewer configurations would have to be evaluated.
The goal here is to reduce the computational effort required to find an optimal

configuration that minimizes the number of SDCs in a fault injection campaign.

• In complex systems, there are partitions of assertions that are independent
of each other.

• These independent partitions can be considered separately in respect to
susceptibility to faults.

These assumptions are considered and theoretically justified in the following chapters.

32

4.3 Proposed Solutions

4.3.1.2. Transitivity

As described in section 4.1, the fault-injection step records for each injected bit flip
which assertions are triggered by it. Thus, assertions {ak, ..., al} can be triggered
by one injection. For the following program section assert1 is a1, assert2 is a2
and assert3 is a3:

bool a = 0;
assert1(a == 0);
bool b = 0;
assert2(a == 0 && b == 0);
assert3(b == 0);

It was experimentally examined that the assertions A1 = {a1, a2} and in the
same program, assertions A2 = {a2, a3} are triggered by an injection. Thus, sets
of assertions can overlap, while the union of these sets A1∪2 = {a1, a2, a3} in this
program excerpt is not triggered by a single injection.
The question arises whether, for the purpose of partitioning, the assertions of the

set A1 can be considered independently of the assertions of the set A2, or whether
the assertions may only be seen together in the union A1∪2. The following thoughts
can be made in this regard: It is first assumed that the sets A1 and A2 can be
considered independently. That means the program contains in one run only the
assertions from A1 and in another run only the assertions from A2. On each of the
program runs, the number of SDCs would be minimized and the best configuration
determined. After the independent optimization, the optimal configuration with
respect to all assertions a1, a2, a3 of the program would then be determined. In
this example, it is then assumed that for A1 the optimal configuration would be
[0, 1], so only assertion a2 would be active and contained in the program section
for a minimum number of SDCs. For A2, the optimal configuration would be
[0, 1], so only assertion a3 would be active. This creates the contradiction that the
optimization on A1 activates assertion a2, but according to the optimization on A2
it should be deactivated. This contradiction could also not be resolved easily, since
under the assumption that assertion a2 should be activated, the optimization on A2
would also have to be considered under this aspect. It follows that the assertions
in A1 and A2 must not be viewed independently, but the unified set of A1 and
A2 has to be considered. The sets must be unified if they overlap. Therefore,
sets of assertions have a transitive relation to each other. Thus, for a correct
optimization, the sets of assertions must be transitively joined. For the example
above, the assertions a1, a2, a3 must be considered together in one optimization
process.

33

Proposed Solutions 4.3

4.3.1.3. Independent Assertions Regarding Redundancy

In section 3.4.1 it is found that assertions must not be considered independent if
they partially or completely protect the same memory area. If assertions are to be
partitioned, this dependency must be taken into account. The goal are partitions
which can be considered independently with respect to redundancy. Only within
these partitions assertions should protect the same memory areas. In this section
we will discuss how this dependency can be extracted from the recorded data from
section 4.2.
In order to determine which assertions protect the same memory areas, it is

possible to take advantage of the fact that in the recording as described in sec-
tion 4.2, triggering an assertion does not cause the program to terminate. The
program will continue to run and it will only be recorded that the correspond-
ing assertion was triggered on that injection. If further assertions are triggered
after this assertion was triggered, this is also recorded for this injection. Thus,
each assertion triggered by an injection is recorded. Since these assertions are all
triggered by one injection, i.e. the injection into a memory bit before a CPU cycle,
these assertions must all protect this memory bit and thus overlap in it. In the
record, all the information necessary to determine all redundant dependencies are
in this form and can be read out piece by piece from the Injections which trigger
more than one assertion.

4.3.1.4. Independent Assertions Regarding Time Overlap

In section 3.4.2 it is recognized that assertions are not only dependent of each other
if they protect the same memory areas, but are also dependent if at a certain point
in time these assertions are triggered from injections in different memory areas.
This dependency is also called dependency through time overlap in this thesis.
The reason for this is that the instructions of an assertion increase the attack
surface also in other memory areas related to other assertions. It then depends
on whether these other assertions are active, so that the additional SDCs, caused
by the increased attack surface, are detected by these assertions and do not affect
the fault tolerance negatively.
This dependency through time overlap is to be determined from the recorded

assertions from section 4.2. To do this, the injections and the triggered assertions
recorded for them are grouped by their dynamic instructions. The dynamic in-
structions are the instructions executed by the CPU. Thus, all assertions that are
triggered in one of the respective dynamic instructions are selected as related in
time. Assertions that are triggered by injections that occur at the same time are
related.
Independent assertions regarding time overlap are assertions that are not triggered

by injections at the same time. If partitions are constructed with them, only

34

4.3 Proposed Solutions

within a partition the assertions should fulfill the dependency through time over-
lap between each other.

4.3.1.5. Further Heuristics

In addition to the exact partitioning of the previous sections, heuristics will be
presented, that have the potential to further subdivide the assertions into smaller
partitions while without ignoring of the connection between the assertions too
much. In other words, the goal must be to get as close as possible to the optimal
configuration and at the same time reduce the computation time needed to find
this optimum. Since these are heuristics, it cannot be directly proven that this
goal is met by every application to every program. It is dealt in chapter 6 in the
evaluation exemplary on programs and operating systems, for which the following
heuristics are used. It will be considered how well these heuristics reduce the
computation time and how far the result is from the minimum number of SDCs.
In the following the heuristics are explained.

. Ignore assertions with small influence In this heuristic, assertions with little
influence should be ignored, since their presence or absence probably contributes
insignificantly to finding the minimum number of SDCs.
To determine the influence of an assertion on this optimum, the difference

between minimum detected and maximum added SDCs could be used. The smal-
ler the difference, the smaller could be the influence, since this difference is essen-
tially the benefit of an assertion, which influences the determination of the minimal
number of SDCs in the ILP. In addition, the number of injections by which an
assertion is triggered must also be considered. If an assertion is triggered by in-
jections a large enough number of times, then even a small difference can have an
significant impact. To determine the influence i of an assertion, the product of
the two factors difference between minimum detected and maximum added SDCs
d and the number of injections n triggering this assertion is calculated as follows:

i = d ∗ n (4.8)

Furthermore, it must be judged whether the influence of an assertion is small
enough not to be considered. For this it is probably useful to relate this influence
to the one of the other assertions. For example, all assertions could be sorted
according to their influence and then the assertions with the smallest influence
that together have a certain small percentage of the total influence of all assertions
could be removed. For example, assertions with a combined influence of 5% of the
total influence could be removed.

. Combine assertions with large influence In this heuristic, occurrences of
an assertion are to be combined with other occurrences of the same assertion,

35

Proposed Solutions 4.3

which has a significantly greater influence. Assertions from partitions containing
more than one assertion may be detached from the partition if the influence of the
same assertion is significantly higher for all injections where only this assertion is
triggered. The extracted occurrences of the assertion are then combined with the
individual occurrences of the assertion. The idea here is that while an assertion
may be related to other assertions, individually it may have a significantly greater
impact that the relation plays only a minor role. Individually means in this
context that exactly one assertion is triggered by one injection. The number of
this single occurrences are then the number of injections that trigger only this
assertion. Only merging with single occurrences are considered for this heuristic
and not also occurrences in other partitions with more than one assertion, since an
assertion in another partition would otherwise be assigned an occurrence that is
too high compared to the other assertions of a partition. Since each partition leads
to an individual optimal configuration, it does not seem logical to mix partitions
containing such relations.

The influence is calculated in the same way as in equation 4.8. However, the
difference between minimum detected and maximum generated SDCs is identical
in this case. Accordingly, it is sufficient to compare the number of occurrences of
an assertion directly, since the ratio between them is interesting. It is suggested to
detach an assertion from a partition if the proportion of single occurrences of an
assertion exceeds a threshold of all occurrences of this assertion in all partitions.
Such a threshold could be for example 95%. That means, if the single occurrences
contain 95% of all occurrences of this assertion over all partitions, this assertion
is removed from all partitions and merged with the single occurrences. As an
example, this procedure can be shown with the following partitions, where P
represents an arbitrary partition and Sa1 represents the single occurrences for
assertion a1 and Sa2 for a2 and Sa3 for a3, respectively:

P1 = {a1 × 1000, a2 × 20, a3 × 20}
Sa1 = a1 × 990
Sa2 = a2 × 10
Sa3 = a3 × 10

(4.9)

In this case, a1 has 990 single occurrences versus a total of 1000 occurrences.
Thus, the single occurrences have a 99% share of all occurrences and according
to a threshold of 95%, a1 would be separated from P1 and then forms its own
partition. The single occurrences for a2 and a3, respectively, account for only 50%
and accordingly none of these assertions would be detached. The result after this

36

4.3 Proposed Solutions

step is shown below:
P1 = {a2 × 20, a3 × 20}
P2 = {a1 × 1000}

Sa1 = a1 × 990
Sa2 = a2 × 10
Sa3 = a3 × 10

(4.10)

In the optimization step, only this assertion would then be evaluated individually
as an own partition.

4.3.1.6. Conclusion

In this chapter methods are presented, which should make it possible to find the
optimal configuration without having to execute all possible combinations, since
this is practically not possible for programs with 100 assertions and more. It is
explained first, how the number of SDCs for an arbitrary configuration can be
computed. For this computation it is necessary to execute one fault injection
campaign with all assertions active. This allows a faster determination of the
number of SDCs for a configuration. However, even with this method it is hardly
feasible to calculate the number of SDCs of all possible configurations, since this
is also not practical for a program with, for example, 2100 possible configurations.
Therefore Methods are investigated that are intended to find or approximate

the optimal configuration, without considering all possible configurations. Ran-
domization is proposed first, but it browses the search space non specifically and
without prior knowledge of the problem, and is likely to yield insufficient and un-
certain results. Then, the possibility of designing an evolutionary algorithm for
the problem is discussed. This variant has the advantage that the search space for
an optimal configuration can be arbitrary, but at the same time an evolutionary
algorithm converges slowly to a local optimum and needs tuning of its paramet-
ers. It would be a slow and inflexible method since it would have to be applied to
each program separately to find the specific optimal configuration. Subsequently,
the use of Integer Linear Programming is suggested. It can be exploited that
the number of SDCs of a configuration can be calculated. By using an ILP, an
optimal configuration can be found if the ILP can be solved in acceptable time.
However, even this method becomes slower as the number of assertions increases.
For example, the Linux kernel has at least 8000 assertions. With this amount, the
ILP could take an impractically long time. Therefore, it is suggested to partition
the assertions and utilize the dependencies between the assertions. The goal are
partitions that are as independent of each other as possible and can be optimized
individually. This should reduce the complexity of the optimization problem. The
extent to which partitioning is suitable for this is evaluated in chapter 6.

37

5. Realization and
Implementation

This chapter describes how the proposed solutions from chapter 4 were imple-
mented. In section 5.1 the implementation of the DETOx tool will be discussed.
Finally, section 5.2 describes how the embedded operating systems used for eval-
uation in this thesis were adapted and which benchmarks were selected for them.

5.1. DETOx
In this section the implementation of the DETOx tool and its extensions will
be discussed. Therefore, in section 5.1.1 some preprocessing is done to prepare
for the use of FAIL* and DETOx. Then, in section 5.1.2, the recording step
is discussed and it is shown how to determine whether assertions are triggered
during an injection. Then, in section 5.1.3, the profiler step is shown, where
the captured data is further processed so that it can be turned into an ILP in
the analyzer step. The analyzer is implemented like described in 4.1, 4.2.3 and
4.3.1 which includes also the determination of partitions. The workflow with the
most important aspects is shown in figure 5.1 and discussed in more detail in the
following sections.

5.1.1. Preparation
Before the execution of an fault injection campaign and further processing by
DETOx, the code to be injected must be prepared. The notable preparations are
listed below:

• Prepare for FAIL*
In the code used, markers must be set at certain points that give FAIL*
signals. This markers are realized by symbols which are the reference to a
function or a global variable.
There must be a symbol in the code where FAIL* can register that the
program should be terminated because all instructions important for the
program have been executed. There are also symbols that can indicate to
FAIL* that an fault was detected. In this case there are symbols by which

39

Realization and Implementation 5.1

Figure 5.1.: Visualization of the workflow used in this thesis.

40

5.1 Realization and Implementation

FAIL* terminates the program, as well as those by which FAIL* lets the
program continue to run, but saves that an error condition was triggered
at the corresponding injection. In such a case, after the occurrence of such
a symbol, others can be detected during the same fault injection. These
symbols are used in combination with the recording of assertions while a
fault injection. Triggering an assertion would then no longer terminate the
program, but call a function that indicates FAIL* that an assertion was
triggered. The insertion of these symbols was done manually or in the case
of the symbols, that are used in combination with assertion, also automated
with Python scripts.
In addition, the program must produce a suitable output, which is used to
register an SDC. If the output for an injection differs from the output of the
golden run, but otherwise the program has terminated normally, then the
result for that injection is a SDC. The specification of the output is done
manually.

• Prepare for DETOx

For DETOx, adjustments must be made to the assertions present in the
program. These assertions all need an unique name so that FAIL* in the
fault injection campaign knows which assertions exactly are triggered by an
injection. This is done using the found assertions for eCos and FreeRTOS
from section 3.1. Each occurrence of an assertion in the code is automatically
replaced by an unique assertion through a Python script. In addition, an
assertion must no longer cause the program to terminate. For recording
which assertions are triggered by which injection, the program must be able
to continue running. For this purpose an assertion only calls a symbol that
tells FAIL* that an assertion was triggered and does nothing else.

5.1.2. Recording
This section explains how to implement the recording of assertions for an injec-
tion in FAIL*. The recording step is an extension of the FAIL* fault injection
campaign. This means that during the injections of the faults, assertions are mon-
itored for triggering and if one is triggered, it is recorded for the injection. The
fault injection is performed in detail by a FAIL* client, which in turn receives
the individual fault injection experiments from a server, injects this fault into the
program, and then sends the result back to the server. This client can be im-
plemented in different ways. In the default implementation, this client is part of
the so-called generic-experiment, which implements a common fault injection
campaign. Figure 5.2 visualizes the relationship between the FAIL* components
and the user-defined experiment. Bochs is an open source IA-32 x86 PC emulator

41

Realization and Implementation 5.2

[1] with which the FAIL* components can communicate. For the user-defined
experiment different interfaces are available. It is possible to define listeners that
can listen for user-definable symbols. This is particularly interesting for the re-
cognition of assertions. In this case a listener monitors the call of the function
ASSERTION_DETECTED. This function was automatically placed after the call of
each assertion, so that it is called when the assertion is triggered. In addition, the
following callback functions are interesting in that context:

• cb_before_resume(): This function is called after the fault was injec-
ted. At this point the listener should be activated to look for the function
ASSERTION_DETECTED which means a triggered assertion.

• cb_during_resume(BaseListener *event): This callback function is entered
when the function ASSERTION_DETECTED is called after the fault injection
and the listener catches it. In the callback function the return address for
ASSERTION_DETECTED is added to the current running injection. After that
the listener is reactivatet and the injection resumes unaffected.

• cb_after_resume(BaseListener *event): This callback function is called
for example when a symbol is reached that indicates FAIL* to stop. The run-
ning injection is finished at this point and the detectors which are collected
until then are linked with the injection.

5.1.3. Profiler
The profiler is based on the work of Lenz and Schirmeier [10]. The profiler de-
termines the static and dynamic instructions of an assertion and determines how
many failures an assertion detects and how many are added by it. This is done
in particular by appropriate database queries. The database contains all relevant
data of a FAIL* fault injection campaign.
To get the dynamic instructions, the so-called fulltrace table in the database

is used, which contains an entire trace of the program execution, in which dynamic
instructions are mapped to static ones. Using a disassembler, the unique name of
an assertion can be used to find the static instruction where it is located in the
assembly code. The fulltrace can then be used to find the dynamic instructions
of that assertion. Relevant to this approach is that it may be that a function
is called within an assertion, such as the is_sorted function in the quicksort
example from section 3.2. This function would not be recognized as part of the
assertion, but must be counted towards it for the correct calculation of SDCs. If
this is the case, it is recognized that an instruction of the assertion contains a call
of a function. This call gap is bridged and the bridged instructions are added to
the dynamic instructions of the assertion.

42

5.2 Realization and Implementation

Figure 5.2.: Visualization of the Plumbing Layer of FAIL* [17].

43

Realization and Implementation 5.2

5.2. Embedded Operating Systems
In this thesis, the embedded operating systems FreeRTOS [5] and eCos [3] are
used as more complex programs for evaluation. These have been chosen because
they have a sufficient number of assertions already existing in the code, as shown
in section 3.1, and thus could push the presented solutions to their limits. In
particular, eCos contains a lot more assertions compared to FreeRTOS and should
therefore be evaluated more intensively.
Both embedded operating systems were prepared according to the prepera-

tion step from section 5.1.1. This means that all occurrences of assertions found
were automatically replaced with unique assertions in each case, which still check
the same condition but no longer terminate the program. Instead, a function
called ASSERTION_DETECTED is called which indicates FAIL* that an assertion was
triggered. In addition, other necessary symbols have been included, for example
to indicate the end of the injection.
Different tests are considered for FreeRTOS and eCos. All tests are written in

C or C++ and are compiled with the optimization level -O0.
The demo used for FreeRTOS is explained below:
• Blinky_Demo: For FreeRTOS, a demo for the FreeRTOS IA32 (x86) flat

memory model port is used and is pre-configured to run on the Galileo Gen
2 single board computer. This variant is required for FreeRTOS to run in
the Bochsemulator of FAIL*. The demo has been modified and extended
in this thesis and consists of two tasks which are communicating through a
queue. Additionally a mutex was added. On the board the demo would let
a led blink. During the FAIL* Campaign the state of the led is written to a
file.

For eCos, the benchmarks kalarm0 and cnt_sem1 from the eCos kernel test suit,
which is supplied with the source code, were used. In addition, a custom test was
written, which will be called kernel_test in the following. In the following the
tests are explained:

• kalarm0: This test includes three alarms and one counter. The alarms are
all triggered at different timings. The number of alarm triggers was reduced
to achieve an acceptable runtime of the fault injection campaign. The test
essentially checks that the counter and alarms are working correctly.

• cnt_sem1: This test includes three counting semaphores which are used
between two tasks. The test essentially checks that the counting semaphores
are working correctly.

• kernel_test: This is a self created test which should target many different
components of the kernel in one test. This can not be achieved by the exist-
ing test, because they focus usually on one component only. The kernel_test

44

5.2 Realization and Implementation

includes two tasks, one counter, one alarm, one mailbox (which is essentially
a queue) and one semaphore.
The first task sorts an array with bubblesort while after each swap the
current value is send over the mailbox to a second task which prints the
data to the output. A binary semaphore is used to block the first task until
the value is printed. After that a counter is incremented on which an alarm
is listening and every four increments a character is printed to the output.
The code is added in the appendix in A.

45

6. Evaluation
In this chapter, the presented solutions for finding the optimal configuration from
chapter 4 will be evaluated with the implemented infrastructure from chapter 5.

6.1. Evaluation of a Simple Program
In this section, simple programs are used to investigate whether the method of
Integer Linear Programming (ILP) from section 4.2.3 is suitable to find the optimal
configuration of assertions for the given programs. In doing so, the programs are
chosen to allow the execution of any possible configuration and thus to verify that
for these programs the ILP determines the optimal configuration.
As a simple program that does not contain too many assertions so that every

configuration can be executed, the quicksort example from section 3.2 is chosen.
There are five assertions in this program, resulting in 25 = 32 configurations.
First, it will be checked how much the deviation of the real executed configur-
ations, which are already determined in section 3.2, to the calculated synthetic
configurations is. This is to determine whether the calculation method from sec-
tion 4.1 is likely suitable for determining the number of SDCs for a configuration
without actually having to run it. Since the basics of the calculating method for
the synthetic configurations are also used for the creation of the ILP, it is central
for the further procedure to show that the calculation is as close as possible to
reality. In the paper of Lenz and Schirmeier [10] it is already stated that the
calculation method can be very accurate with an average deviation of about 0.2%,
but a larger example shall also be tested at this point. In table 6.1 the num-
ber of SDCs of the synthetic configurations SDCsynthetic are compared to the real
executed SDCreal and a deviation is given. The entries are sorted in ascending
order by the SDCs number of real executed configurations. The deviation var-
ies from −1.29% to 1.95%. This is small enough that the order of the synthetic
configurations largely matches the order of the real executed configurations. The
optimal configuration is the same for both. Accordingly, it is further assumed
that the computational method can be suitable to calculate the number of SDCs
of synthetic configurations. Since the calculation procedure is based on the same
fundamentals as the creation of the ILP, the assumption is also made that the
procedure is suitable for finding the optimal configuration. In the further course
of the evaluation, this assumption will be verified with further real executed con-

47

Evaluation 6.2

figurations.
When creating an ILP with DETOx for the quicksort algorithm and solving it

with glpsol from the GLPK package which is intended for large-scale ILP [7], the
solution for the optimal configuration is [0, 0, 0, 0, 1]. This is the expected result.
Therefore the ILP method is working for this simple example. In the next section
ILPs for more complex programs are created and evaluated to further verify the
method.

6.2. Complex Software: Embedded Operating
Systems

After it can be shown in the preceding section that the method of the ILP for
simple examples is able to determine the optimal configuration, the procedure is to
be extended in this chapter to a more complex program example. For this purpose
the embedded operating systems eCos and FreeRTOS are used. Since these contain
224 and 4489 assertions as in section 3.1 determined, not all configurations can
be executed or computed for these operating systems. It must be considered that
the determined number of assertions is an estimate, since it is not clear which
assertions are really covered and executed during a program execution. However,
it can be anticipated here that a sufficient number of assertions are executed
during an execution of FreeRTOS and eCos, so that not all configurations can be
executed or calculated. To verify that the optimal configuration determined by
the ILP really has the smallest number of SDCs among all possible configurations,
the following methods are proposed:

• Randomization: This method is already explained in section 4.2.1. Here,
the number of SDCs of a random configuration is computed or executed
and, if possible, a high number of random configurations is used to show
that the optimal configuration determined by the ILP is not outperformed
by a randomly chosen one.

• Small Hamming Distance: All possible configurations that are a Ham-
ming distance of one away from the opimal configuration are evaluated. The
aim is to investigate whether the direct neighbors of the optimal configura-
tion do not have fewer SDCs compared to it.

In order to validate the calculated configurations, a subset of configurations is ex-
ecuted in real. Furthermore, the runtime of the ILP solver is determined until an
optimal solution is found. If the runtime is significant, we also investigate to what
extent the assertions of the two embedded operating systems can be partitioned.

48

6.2 Evaluation

[assert1, assert2, assert3, assert4, assert5] SDCreal SDCsynthetic error

[0, 0, 0, 0, 1] 667 792 671 174 0.50%
[1, 0, 0, 0, 1] 688 507 680 590 −1.16%
[0, 1, 0, 0, 1] 697 033 696 201 −0.12%
[0, 0, 0, 1, 1] 701 957 693 018 −1.29%
[0, 0, 1, 0, 1] 703 802 698 904 −0.70%
[1, 0, 0, 1, 1] 704 466 702 434 −0.29%
[1, 1, 0, 0, 1] 707 584 705 617 −0.28%
[1, 0, 1, 0, 1] 715 638 708 320 −1.03%
[0, 0, 1, 1, 1] 720 954 720 759 −0.03%
[0, 1, 1, 0, 1] 722 079 723 981 0.26%
[0, 1, 0, 1, 1] 726 452 718 050 −1.17%
[1, 1, 0, 1, 1] 730 459 727 466 −0.41%
[1, 0, 1, 1, 1] 735 990 730 175 −0.80%
[1, 1, 1, 0, 1] 741 354 733 397 −1.08%
[0, 1, 1, 1, 1] 744 953 745 836 0.12%
[1, 1, 1, 1, 1] 755 252 755 252 0.00%
[0, 0, 0, 0, 0] 1 539 162 1 569 759 1.95%
[0, 0, 0, 1, 0] 1 568 798 1 551 790 −1.10%
[1, 0, 0, 1, 0] 1 592 419 1 580 798 −0.74%
[0, 1, 0, 0, 0] 1 606 239 1 604 603 −0.10%
[1, 0, 0, 0, 0] 1 606 692 1 599 027 −0.48%
[0, 1, 0, 1, 0] 1 613 835 1 601 115 −0.79%
[0, 0, 1, 1, 0] 1 626 834 1 623 432 −0.21%
[0, 0, 1, 0, 0] 1 638 825 1 649 377 0.64%
[1, 1, 0, 0, 0] 1 639 217 1 633 677 −0.34%
[1, 0, 1, 1, 0] 1 647 153 1 652 408 0.32%
[1, 1, 0, 1, 0] 1 650 336 1 630 095 −1.24%
[0, 1, 1, 1, 0] 1 670 647 1 673 952 0.20%
[0, 1, 1, 0, 0] 1 672 429 1 685 132 0.75%
[1, 0, 1, 0, 0] 1 679 553 1 678 613 −0.06%
[1, 1, 1, 1, 0] 1 702 363 1 702 928 0.03%
[1, 1, 1, 0, 0] 1 714 920 1 714 202 −0.04%

Table 6.1.: Table with the occurrences of SDCs of a quicksort algorithm with five
assertions and correspondingly 32 possible synthetic and real configur-
ations. The error column describes the deviation from the real config-
uration to the corresponding synthetic configuration. The entries are
in ascending order of the number of SDCs from the real configurations.

49

Evaluation 6.2

The evaluations took place on a four Intel Xeon E5-4640 CPU System with
252GB of main memory. A FAIL* fault injection campaign consisted of 64 injec-
tion clients which where executed on one logical core each.

6.2.1. Case Study: FreeRTOS
First, the embedded operating system FreeRTOS is evaluated. For this, Blinky_Demo
is used, which is already provided with the source code and uses the FreeRTOS
IA32 (x86) flat memory model port. The characteristics of the demo and the ne-
cessary preparations for the fault injection campaign are described in more detail
in section 5.2.
In the first step the recording is performed. This means that the extended fault

injection campaign is executed for the demo and it is recorded which assertions
are triggered by which injections. Then the profiler determines the dynamic and
static instructions of the assertions. From this, it determines the added SDCs
caused by the execution of the assertions and the detected SDCs. In the process,
the profiler detected 60 different assertions that were triggered during the fault
injection campaign. In the subsequent step, the analyzer creates an ILP from this
data. There is basically no significant runtime required for this. The ILP consists
of 38 single variables included in the optimization function, and 20 variables from
single variable products, as well as 60 linearization rules. Not all 60 variables
are in the optimization function, since in this case only SDCs are optimized for,
but assertions are captured for all failures. For solving the ILP, glpsol is used to
determine the potential optimal configuration. This has 14 active assertions for
the demo used in FreeRTOS.
From this possibly optimal configuration, all 60 configurations are determined

that are one Hamming distance away from it. In addition, for a further compar-
ison, the respective edge cases are calculated in which all assertions are active
or inactive in a configuration. In addition, 3000 random configurations are also
sampled. The runtime of the previous steps is shown in table 6.2. In figure 6.1 all
these computed configurations are shown in a plot. In this, it can be seen that the
calculated optimal configuration is not outperformed by any other. Among the
hamming configurations, however, there are some that generate just as few SDCs.
If the respective edge cases are considered, it is noticeable that the configuration
with all assertions active belongs to the better configurations and is thus clearly
better than the configuration in which all assertions are inactive. In addition, it
can be seen from the random configurations that there are two clearly separable
clusters of configurations. If in addition the worst hamming configuration is con-
sidered, then it can be seen that this is in the worse cluster in contrast to all other
hamming configurations. If it is now considered that this differs from the op-
timal configuration by one assertion, then this assertion can be determined. The
assertion is active in the optimal configuration and inactive in the hamming con-

50

6.2 Evaluation

Step Runtime (in hours)
Recording 1:10
Profiler 0:30

ILP solver 0
Calculate hamming (60) 0:01
Calculate random (3000) 0:08

Table 6.2.: Table with the step in the workflow for the FreeRTOS Demo on the
left side and the corresponding runtime on the right side.

figuration. This means that the presence of these assertions has a strong positive
influence. In the following the assertion is shown:

assert(pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength);

This assertion is located in the queue.c file at line 3032. It can be determined
from the data of the fault injection campaign that the assertion is not executed in
the golden run, i.e. the non-injected program. However, since this was triggered
during fault injections, it is reasonable to assume that it was triggered by a cor-
ruption of the control flow. Accordingly the assertion would have in the normal
fault-free program run no negative influence on the number of SDCs, since this is
only then executed, if at certain places faults occurred. However, the positive in-
fluence is considerable. This also questions the objective from section 4.2.3 that a
configuration with as few active assertions as possible should be found. According
to the current knowledge, with the same minimum number of SDCs, it could also
make sense to have a configuration with a particularly large number of assertions,
which could be triggered by a slightly changed input at fault injection and would
otherwise have essentially no negative influence. However, it shows at least that
it could be argued for both variants.
In the previous section it can be shown, as far as this is possible under the given

constraints, that the calculated optimal configuration cannot be surpassed by any
other of the calculated ones. This means for Blinky_Demo that the method of the
ILP apparently works. In the following, the calculation method itself will be veri-
fied by executing real configurations. For a comparison, the optimal configuration,
as well as three of the best, three average and the three of the worst hamming
configurations are selected. In addition, the confiurations of each of the edge cases
and the best, one average and the worst random configuration are selected from
the existing dataset. The results are presented in table 6.3. The deviation between
synthetic and real configuration varies from −0.06% to 0.66% and is therefore very
small. However, it can be seen that one hamming configuration is slightly better
in reality. However, these differ only by about one thousandth of a percentage
point. The difference between the configuration with all assertions active and the

51

Evaluation 6.2

Figure 6.1.: Plot of calculated specific and random configurations of the
Blinky_Demo test. On the x-axis the number of active assertions
of a configuration is plotted. On the y-axis is the amount of SDCs
a configuration produces. The calculated optimal configuration is in
red, the configurations with hamming distance one to the optimal are
green, the edge case configurations were all assertions are active or in-
active are shown in purple and the additional random configurations
are blue.

52

6.2 Evaluation

Selected from Amount of active assertion SDCreal SDCsynthetic error

Hamming best 15 15 964 992 16 030 016 0.41%
Calculated Optimum 14 15 965 432 16 030 016 0.40%

Hamming best 15 15 965 432 16 030 016 0.40%
Hamming medium 15 15 972 126 16 032 600 0.38%
Hamming best 13 15 989 551 16 030 016 0.25%

Hamming medium 13 16 000 659 16 037 743 0.23%
Hamming medium 13 16 024 704 16 031 409 0.04%
Hamming bad 13 16 049 040 16 115 872 0.41%
All active 60 16 315 968 16 305 786 −0.06%

Hamming bad 13 16 381 011 16 388 842 0.05%
Random best 30 16 026 035 16 083 568 0.36%

Random medium 12 18 027 846 18 147 254 0.66%
Hamming bad 13 18 067 755 18 094 468 0.15%
All inactive 0 18 597 916 18 643 401 0.24%

Random worst 35 18 875 625 18 871 621 −0.02%

Table 6.3.: Table with the occurrences of SDCs of the Blinky_Demo with 60 as-
sertions. A comparison is given between special configurations. The
error column describes the deviation from the real configuration to the
corresponding synthetic configuration. The entries are in ascending
order of the number of SDCs from the real configurations.

synthetic optimal configuration is 2.15% in reality and 14.15% for the configura-
tion with all assertions inactive. Accordingly, the improvement in fault tolerance
with the optimal configuration is comparatively small to the configurations which
would be normally used in practice.
Since the ILP can be solved practically immediately, further optimizations to

the runtime, such as partitioning, are not necessary. It can also be seen that the
recording step in particular is time consuming. This is due to the difficult to solve
circumstance that the fault injection must be injected into all relevant points in
order to collect reliable data about the triggering of the assertions.

6.2.2. Case Study: eCos
An evaluation is also to be provided for the embedded operating system eCos.
The existing tests cnt_sem1 and kalarm0 that come with the source code of eCos
are used. In addition an own test was written, which is called here kernel_test.
In kernel_test a wider range of kernel functionalities are used within one test
than in the existing tests. At least compared to those that can be injected in a
reasonable time in a FAIL* campaign. The characteristics of the benchmarks are

53

Evaluation 6.2

Step Runtime (in hours)
Recording 0:21
Profiler 0:02

ILP solver 0
Calculate hamming (238) 0:03
Calculate random (3000) 0:23

Table 6.4.: Table with the step in the workflow for the kalarm0 test on the left
side and the corresponding runtime on the right side.

explained in section 5.2. The evaluation procedure used here is the same as in the
previous section.
For the eCos tests, the first step is to record the assertions. The profiler then

pre-processes the resulting data and the analyzer uses it to create the ILP. This
then solves glpsol and with the calculated optimal configuration all further con-
figurations with hamming distance one are created, as well as the edge case con-
figurations and random configurations. In the following sections, the results will
be discussed in more detail.

6.2.2.1. eCos test: kalarm0

The runtimes for the according steps are shown in table 6.4. Due to the shorter
program runtime, kalarm0 is significantly faster in the recording and profiler step.
But kalarm0 contains significantly more assertions, which are more complexly
interrelated. Thus the computation of new assertions takes longer. The profiler
has detected 238 triggered assertions after the fault injections. The ILP consists
of 39 single variables included in the optimization function, and 148 variables from
single variable products, as well as 444 linearization rules. The computed optimal
configuration contains 12 active assertions.
As for FreeRTOS, the selected configurations are illustrated in Figure 6.2.

Again, the optimal configuration calculated from the ILP is at least as good as
any other configuration shown. It is also evident from the edge case configurations
and the plotted trend in the random configurations that there is a clear tendency
towards higher susceptibility to faults as the number of active assertions in a con-
figuration increases. In addition, two separable clusters of configurations are also
recognizable here. It is to be seen just like with FreeRTOS that there is exactly
one hamming configuration, which is in the worse cluster. After the same method
as with FreeRTOS the assertion with this high influence is determined. The as-
sertion is inactive in the optimal configuration. This means that this assertion
appears to add significantly more SDCs than it detects. The assertion is shown
below:

54

6.2 Evaluation

CYG_ASSERTCLASS(alarm, "Bad alarm in counter list");

The assertion is located in the file clock.cxx in line 230. The assertion takes a
relatively long time to be evaluated. At the same time, the detected SDCs cannot
compensate for the additional ones. Figure 6.3 shows the faultspace for kalarm0
with this assertion. From this it can be seen that the assertion is called frequently.
This adds up to the negative effect, resulting in the significantly negative effect
on fault tolerance when this assertion is included in a configuration. Assertions
with a significantly negative effect could also be responsible for the visible trend
in Figure 6.2, since the probability increases with an increasing number of active
assertions that they are also included in the configuration.
The ILP also seems to provide the best solution for kalarm0 when compared

with the collected data. To validate the computed configuration, real executed
configurations are again compared with the computed ones, as in the evaluation
of FreeRTOS. This comparison is shown in table 6.5. A relatively small difference
of −1.03% to 1.23% can be observed between real and synthetic configurations.
However, it is noticeable that there are three better configurations than the calcu-
lated optimal configuration. This could be explained by the fact that the optimal
configuration does not particularly stand out and there are very many config-
urations close to the optimum, as can also be seen in Figure 6.2. In this case,
the optimal configuration is also close to the configuration where all assertions
are inactive, with only a deviation of 0.1%. Despite all this, the configuration
determined here is probably also a good solution in reality, although the best
configuration determined here is 1% better. In comparison to the configuration
where all assertion are active which is seemingly one of the worst configurations,
the calculated optimal configuration is 22% better.
For this test, the ILP was set up to also optimize for the smallest possible

number of active assertions. From the table 6.5 it could be concluded that this
was not successful, since for example one of the best hamming configurations
generates the same number of calculated SDCs, but contains one assertion less.
It could not be determined exactly where the inaccuracy came from, however,
an ILP was also created without this optimization and the result was an optimal
configuration with 17 active assertions. So 4 active assertions more compared to
the original optimal configuration. Possible causes could be in the glpsol, which
could have a tolerance for the termination criterion, whereby no information was
discovered for this, or the ILP is not set up completely correctly.

6.2.2.2. eCos test: cnt_sem1

As evaluated in the sections before the runtimes for the several steps are shown in
table 6.6. It is striking that the runtime for the calculation of a configuration is
quiet high. The reason might be that there are more assertions to be considered in

55

Evaluation 6.2

Figure
6.2.:Plot

of
calculated

specific
and

random
configurations

of
the

kalarm0
test.

O
n

the
x-axis

the
num

ber
of

active
assertions

of
a
configuration

is
plotted.

O
n
the

y-axis
is

the
am

ount
of

SD
C
s
a
configuration

produces.T
he

calculated
optim

alconfiguration
isin

red,the
configurationsw

ith
ham

m
ing

distance
one

to
the

optim
alare

green,the
edge

case
configurations

were
allassertions

are
active

or
inactive

are
show

n
in

purple
and

the
additionalrandom

configurationsare
blue.A

trend
line

through
the

random
configurations

is
yellow

.

56

6.2 Evaluation

Figure 6.3.: Plot of the faultspace of the kalarm0 test. On the x-axis the CPU
cycles and on the y-axis the data memory addresses are plotted. The
resulttypes have different colours. SDCs are red, traps are cyan,
timeouts are yellow, ok marker are white and detected injections are
green. The execution of the significant assertion is in transparent
blue. The y-axis is squashed to focus on the important parts.

57

Evaluation 6.2

Selected from Amount of active assertion SDCreal SDCsynthetic error

Random best 48 15 658 833 15 754 753 0.61%
Hamming medium 11 15 761 018 15 754 137 −0.04%
Hamming best 11 15 800 959 15 753 217 −0.30%

Calculated Optimum 12 15 818 712 15 753 217 −0.42%
Hamming best 13 15 818 712 15 753 217 −0.42%
Hamming best 13 15 819 974 15 753 217 −0.42%
All inactive 0 15 836 755 15 821 577 −0.1%

Hamming medium 13 15 849 348 15 793 217 −0.36%
Hamming medium 13 15 947 378 15 931 811 −0.10%
Hamming bad 13 16 201 012 16 150 495 −0.31%
Hamming bad 13 16 402 500 16 384 249 −0.11%
Hamming bad 13 18 107 146 18 085 447 −0.12%

Random medium 125 18 277 171 18 090 057 −1.03%
Random worst 170 20 290 547 20 543 376 1.23%

All active 238 20 320 097 20 514 704 0.95%

Table 6.5.: Table with the occurrences of SDCs of the kalarm0 test with 238 as-
sertions. A comparison is given between special configurations selec-
ted from the synthetic configurations. The error column describes the
deviation from the real configuration to the corresponding synthetic
configuration. The entries are in ascending order of the number of
SDCs from the real configurations.

58

6.2 Evaluation

Step Runtime (in hours)
Recording 0:52
Profiler 0:15

ILP solver 0
Calculate hamming (239) 0:14
Calculate random (3000) 3:21

Table 6.6.: Table with the step in the workflow for the cnt_sem1 test on the left
side and the corresponding runtime on the right side.

kalarm0 when looking on SDCs. The profiler has detected 239 triggered assertions
after the fault injections. The ILP consists of 65 single variables included in the
optimization function, and 103 variables from single variable products, as well as
309 linearization rules. The computed optimal configuration contains 17 active
assertions.
As before, the selected configurations are illustrated in Figure 6.4. Again, the

optimal configuration determined by the ILP is the best among the synthetic ones.
As with kalarm0, a trend towards more SDCs with more active assertions can be
observed.
The synthetic configurations are compared in table 6.7. From this, a variation

of −2.19% to −0.67% is observed. It is noticeable that there could be a bias in
the deviation, as it appears to be quite regular. It can be seen that, again, the
calculated optimal configuration is outperformed in real execution by two other
configurations selected here. However, the real best one is only 0.13% better than
the synthetic optimal configuration. This in turn is 11% better than the configur-
ation in which all assertions are active and 0.7% better than in the configuration
in which all assertions are inactive.
Also for cnt_sem1, both the computation of the synthetic configurations and

the determination of the optimal configuration by the ILP seem to be useful.

6.2.2.3. eCos test: kernel_test

As evaluated in the sections before the runtimes for the several steps are shown
in table 6.8. Here the runtime for calculating on configuration is extremely high.
Much more assertions are used in the optimization function and the assertions are
related to each other in a much more complex way compared to the previous pro-
grams. The profiler has detected 278 triggered assertions after the fault injections.
The ILP consists of 92 single variables included in the optimization function, and
6 185 variables from single variable products, as well as 18 555 linearization rules.
The computed optimal configuration contains 23 active assertions.
As before, the selected configurations are illustrated in Figure 6.4. Again, the

59

Evaluation 6.2

Figure
6.4.:Plot

of
calculated

specific
and

random
configurations

of
the

cnt_sem1
test.

O
n
the

x-axis
the

num
ber

of
active

assertions
of

a
configuration

is
plotted.

O
n
the

y-axis
is

the
am

ount
of

SD
C
s
a
configuration

produces.T
he

calculated
optim

alconfiguration
isin

red,the
configurationsw

ith
ham

m
ing

distance
one

to
the

optim
alare

green,the
edge

case
configurations

were
allassertions

are
active

or
inactive

are
show

n
in

purple
and

the
additionalrandom

configurationsare
blue.A

trend
line

through
the

random
configurations

is
yellow

.

60

6.2 Evaluation

Selected from Amount of active assertion SDCreal SDCsynthetic error

Hamming best 18 23 391 314 22 984 935 −1.77%
Random best 25 23 402 911 23 059 427 −1.49%

Calculated Optimum 17 23 421 065 22 984 935 −1.90%
Hamming best 18 23 421 065 22 984 935 −1.90%
Hamming best 16 23 433 781 22 984 935 −1.95%

Hamming medium 18 23 451 499 23 001 405 −1.96%
Hamming medium 18 23 479 371 23 097 325 −1.65%
Hamming medium 18 23 495 313 22 992 425 −2.19%
Hamming bad 18 23 578 524 23 228 682 −1.51%
All inactive 0 23 589 612 23 226 525 −1.56%

Hamming bad 18 23 923 761 23 467 631 −1.94%
Hamming bad 18 24 348 891 23 965 937 −1.60%

Random medium 170 24 942 424 24 471 938 −1.92%
All active 239 26 218 387 26 043 142 −0.67%

Random worst 198 26 543 290 26 205 590 −1.29%

Table 6.7.: Table with the occurrences of SDCs of the cnt_sem1 test with 239
assertions. A comparison is given between special configurations selec-
ted from the synthetic configurations. The error column describes the
deviation from the real configuration to the corresponding synthetic
configuration. The entries are in ascending order of the number of
SDCs from the real configurations.

Step Runtime (in hours)
Recording 1:40
Profiler 2:30

ILP solver 0:54
Calculate hamming (278) 3:10
Calculate random (3000) 18:45

Table 6.8.: Table with the step in the workflow for the kernel_test on the left
side and the corresponding runtime on the right side.

61

Evaluation 6.2

Selected from Amount of active assertion SDCreal SDCsynthetic error
Hamming best 24 54 850 327 55 004 278 0.28%

Calculated Optimum 23 55 287 299 55 004 278 −0.51%
Hamming best 24 55 287 299 55 004 278 −0.51%
Hamming best 22 55 320 957 55 004 278 −0.58%

Hamming medium 24 55 587 640 55 403 839 −0.33%
Hamming medium 24 55 655 636 55 111 732 −0.99%

Random best 62 55 935 942 55 557 162 −0.68%
Hamming medium 24 56 062 364 55 182 299 −1.59%
Hamming bad 24 56 110 173 56 510 425 0.71%
Hamming bad 22 57 510 510 57 035 128 −0.83%
Hamming bad 24 58 771 788 58 044 047 −1.25%
All inactive 0 61 147 513 61 064 559 −0.14%

Random medium 96 63 042 356 62 779 626 −0.42%
All active 279 69 826 996 69 821 480 −0.01%

Random worst 272 70 344 475 69 953 977 −0.56%

Table 6.9.: Table with the occurrences of SDCs of the kernel_test with 279 as-
sertions. A comparison is given between special configurations. The
error column describes the deviation from the real configuration to the
corresponding synthetic configuration. The entries are in ascending
order of the number of SDCs from the real configurations.

optimal configuration determined by the ILP is the best among the synthetic
ones. As with kalarm0 and cnt_sem1, a trend towards more SDCs with more
active assertions can be observed. Overall, the optimal configuration stands out
much more than in the other benchmarks.
In table 6.9 the synthetic configurations are compared with the real ones. A

deviation of −1.59% to 0.71% is observed. In this case, a hamming configuration
is 0.8% better than the synthetic optimal configuration in reality. The synthetic
optimal configuration is 20.8% better than the configuration with all assertions
active and 9.6% better than the configuration with all assertions inactive.
From the table 6.8 it can be seen that the runtime of the glpsol to solve the ILP

was 54 minutes. This is a sufficiently long runtime to justify the use of partitions.
These are determined according to chapter 4.3.1. This resulted in 4 partitions,
with 152 of the 155 relevant assertions in one alone. Accordingly, the approach
does not seem to be suitable in this case. To reduce the runtime of the ILP anyway,
it is suggested to limit the computation time of the glpsol and to use the result
computed up to this point. A corresponding time series is visualized in figure 6.6.
Here, the glpsol was started with the time limit plotted on the x-axis and the
optimal configuration calculated up to this point was determined. The number of

62

6.2 Evaluation

Fi
gu

re
6.
5.
:P

lo
t
of

ca
lc
ul
at
ed

sp
ec
ifi
c
an

d
ra
nd

om
co
nfi

gu
ra
tio

ns
of

th
e

ke
rn

el
_t

es
t.

O
n

th
e
x-
ax

is
th
e
nu

m
be

r
of

ac
tiv

e
as
se
rt
io
ns

of
a
co
nfi

gu
ra
tio

n
is

pl
ot
te
d.

O
n
th
e
y-
ax

is
is

th
e
am

ou
nt

of
SD

C
s
a
co
nfi

gu
ra
tio

n
pr
od

uc
es
.T

he
ca
lc
ul
at
ed

op
tim

al
co
nfi

gu
ra
tio

n
is
in

re
d,

th
e
co
nfi

gu
ra
tio

ns
w
ith

ha
m
m
in
g
di
st
an

ce
on

e
to

th
e
op

tim
al

ar
e
gr
ee
n,

th
e
ed
ge

ca
se

co
nfi

gu
ra
tio

ns
we

re
al
la

ss
er
tio

ns
ar
e
ac
tiv

e
or

in
ac
tiv

e
ar
e
sh
ow

n
in

pu
rp
le

an
d
th
e
ad

di
tio

na
lr
an

do
m

co
nfi

gu
ra
tio

ns
ar
e
bl
ue
.A

tr
en
d
lin

e
th
ro
ug

h
th
e
ra
nd

om
co
nfi

gu
ra
tio

ns
is

ye
llo

w
.

63

Evaluation 6.3

Figure 6.6.: ILP time series of kernel_test. On the x-axis is the time limit
to solve the ILP for kernel_test and on the y-axis is the number
of SDCs which where the result for the corresponding configuration
determined with the ILP.

SDCs it generates is plotted on the y-axis. It shows that already after 2 minutes
a configuration was calculated, which was 1.4% worse than the optimum. After
16 minutes, a configuration was calculated that was 0.1% worse than the optimal
configuration calculated after 54 minutes. The problem with reducing the time for
the ILP solver is that it is not clear exactly how good a configuration calculated
by it really is, since full confidence would require calculating to the end.

6.3. Influence of Non-Protected Application
Data

In this section it will be examined to what extent large unprotected memory areas
can have an effect on the result of the optimal configuration. For this purpose,
an additional array was added to the quicksort algorithm from section 3.2, which
is created at the beginning of the program and written to the output at the end.
Nothing else happens to this array. The memory of the array is not protected by
any assertion. A fault injection into this array results in an SDC. The program was
tested with such an array with 100 elements and in another run with 1000. The
results of all synthetic configurations were determined. The results are presented

64

6.4 Evaluation

Configuration SDCsynthetic

[0, 0, 0, 0, 1] 6 636 910
[1, 0, 0, 0, 1] 6 723 446
[0, 0, 0, 1, 1] 6 843 736
[0, 1, 0, 0, 1] 6 874 854
[0, 0, 1, 0, 1] 6 877 207
[1, 0, 0, 1, 1] 6 930 272

(a) With array of 100 elements.

Configuration SDCsynthetic

[0, 0, 0, 0, 0] 166 578 704
[1, 0, 0, 0, 0] 167 361 618
[0, 0, 0, 1, 0] 168 410 020
[0, 1, 0, 0, 0] 168 698 035
[0, 0, 1, 0, 0] 168 760 105
[0, 0, 0, 0, 1] 168 997 128

(b) With array of 1000 elements.

Table 6.10.: Table with the occurrences of SDCs of a quicksort algorithm with five
assertions and the six best configurations sorted after the number of
SDCs. In addition an array with 100 and 1000 elements was added
to the program.

in table 6.10 and include the six best configurations of each run. The comparison
is made with the synthetic configurations from table 6.1. It can be seen that
with the array containing 100 elements, the optimal configuration is preserved,
as well as largely the original ranking by number of SDCs. The distance to the
second best configuration with 1.29% is about the same compared to the variant
without the array with a distance of the best to the second best of 1.38%. With
the array with 1000 elements it is obvious that the order has changed. Also, the
configuration with all assertion inactive is now the best configuration.
This confirms the considerations from section 3.2. In this, it is stated that

during the execution of an assertion, additional SDCs can arise if faults are in-
jected into another unprotected memory area in the meantime. The larger the
unmonitored memory becomes, the worse most assertions become, since they add
more and more additional SDCs, but are detecting not more. This shows a funda-
mental problem in determining an optimal configuration, because it also depends
on the size of the unproteced memory, which could change dynamically in real
applications. As a result, it is not possible to conclude directly from the optimal
configuration of a program to the optimal configuration of a similar program.

6.4. Different Optimization Levels
In this section, it will be investigated to what extent different optimization levels
affect the accuracy of the calculation of the synthetic configurations. Up to now,
all programs were compiled with the optimization level -O0. In addition, the level
-O2 is now to be examined exemplarily. For this, the quicksort algorithm from
section 3.2 is considered, as well as the kernel_test.
Table 6.11 shows the results of the quicksort with -O2. It can be seen that

65

Evaluation 6.5

there is a significant difference of −6.64% to 14.58% between the synthetic and
real executed configurations. It is noticeable that in particular there is a high
deviation when assert5 should be inactive. When the data generated by the pro-
filer is analyzed, it becomes apparent that DETOx could not determine dynamic
instructions for this assertion. This leads to the problem that the SDCs, which
were created during the execution of the assertion, are not subtracted, if this as-
sertion is supposed to be inactive in a configuration. This seems to be a major
problem in this case, since the number of SDCs in the synthetic configuration is
greatly overestimated especially when assert5 is not included. The exact reasons
for the lack of identification of the dynamic instructions are presently unknown.
However, an improvement could be achieved before, since originally DETOx was
not able to recognize assert5 at all in the quicksort example. There were prob-
lems with the processing of the text of the source code of the injected programs
by FAIL*, which caused that some lines of the code were not recognized as such.
This problem could be solved.
Furthermore, table 6.12 shows the results of kernel_test with -O2. For this

the configuration with all assertions active and random configurations were eval-
uated. It is noticeable that the deviation varies from −2.19% to 0.88% and is
considerably smaller than in the quicksort example. Possibly the problem of the
unrecognized dynamic instructions does not play such a large role, since it is dis-
tributed over many assertions. However, at least in this example, it does not seem
to fundamentally change the result and therefore possibly only occurs in certain
less frequent cases.
In principle, it would be desirable if other optimization levels would also work

safely, since the use of these alone, as can be seen in the quicksort example, can
significantly reduce the number of SDCs and improve the fault tolerance.

6.5. Limitations of the Approach
As shown in section 6.3, an optimal configuration for a particular program cannot
be applied generally to similar program types. The method is highly dependent
on, for example, the size of the unprotected memory, but possibly also on different
program inputs. At this point a problem comes to play, which applies with fault
injection in general: Each fault injection campaign is applicable in principle first
only to the program into which it was injected. To analyze and perhaps mitigate
the problem, different variants of a program with different representative inputs
would have to be checked.
Another limitation is the quality of the existing assertions. If they are not

able to detect SDCs sufficiently or if they are basically not available at all, then
this method might provide trivial solutions, such as that all assertions should be
inactive. Basically, this could be the case in eCos, where there seems to be a clear

66

6.5 Evaluation

Configuration SDCreal SDCsynthetic error
[0, 0, 0, 0, 1] 241 990 250 765 3.50%
[0, 0, 0, 1, 1] 252 026 266 713 5.51%
[0, 1, 0, 0, 1] 252 488 260 522 3.08%
[0, 1, 0, 1, 1] 256 270 276 470 7.31%
[0, 0, 1, 0, 1] 260 966 269 569 3.19%
[0, 0, 1, 1, 1] 263 994 285 513 7.54%
[0, 1, 1, 0, 1] 271 150 279 292 2.92%
[0, 1, 1, 1, 1] 274 176 295 236 7.13%
[1, 0, 0, 1, 1] 289 863 289 995 0.05%
[1, 1, 0, 0, 1] 290 324 283 804 −2.30%
[1, 1, 0, 1, 1] 291 261 299 752 2.83%
[1, 0, 0, 0, 1] 292 250 274 047 −6.64%
[1, 0, 1, 0, 1] 296 534 292 851 −1.26%
[1, 0, 1, 1, 1] 301 795 308 795 2.27%
[1, 1, 1, 0, 1] 310 649 302 574 −2.67%
[1, 1, 1, 1, 1] 318 518 318 518 0.00%
[0, 1, 0, 0, 0] 544 239 605 410 10.10%
[0, 0, 0, 0, 0] 545 203 605 484 9.96%
[0, 0, 0, 1, 0] 546 062 626 313 12.81%
[0, 1, 0, 1, 0] 551 799 645 946 14.58%
[0, 0, 1, 1, 0] 575 619 669 341 14.00%
[0, 1, 1, 0, 0] 586 799 648 340 9.49%
[0, 0, 1, 0, 0] 593 743 651 132 8.81%
[0, 1, 1, 1, 0] 595 729 688 758 13.51%
[1, 1, 0, 0, 0] 655 207 672 639 2.59%
[1, 1, 0, 1, 0] 661 451 713 175 7.25%
[1, 0, 0, 1, 0] 668 162 693 542 3.66%
[1, 0, 1, 1, 0] 685 187 736 570 6.98%
[1, 0, 0, 0, 0] 695 293 672 713 −3.36%
[1, 1, 1, 0, 0] 701 843 715 569 1.92%
[1, 0, 1, 0, 0] 705 957 718 361 1.73%
[1, 1, 1, 1, 0] 707 979 755 987 6.35%

Table 6.11.: Table with the occurrences of SDCs of a quicksort algorithm with five
assertions and correspondingly 32 possible synthetic and real config-
urations. The program is compiled with -O2. The error column de-
scribes the deviation from the real configuration to the corresponding
synthetic configuration. The entries are in ascending order of the
number of SDCs from the real configurations.

67

Evaluation 6.5

Amount of active assertion SDCreal SDCsynthetic error
37 24134449 24330815 0.81%
3 25729509 25178613 −2.19%

150 27459016 27684347 0.81%
141 27528308 27772403 0.88%
186 28172922 28283010 0.39%
215 29271654 29264785 −0.02%
248 29742339 29480267 −0.89%
256 29899800 29767065 −0.45%
282 30787696 30606906 −0.59%

Table 6.12.: Table with the occurrences of SDCs of the kernel_test compiled
with -O2 with 282 assertions. A comparison is given between random
configurations and the configuration with all assertions active. The
error column describes the deviation from the real configuration to the
corresponding synthetic configuration. The entries are in ascending
order of the number of SDCs from the real configurations.

trend towards a worse and worse SDC value, the more assertions are active in a
configuration. Despite all this, the presented method creates a significantly greater
certainty of having really found the optimal configuration, since, for example,
the kernel_test also follows this trend, but the optimal configuration can be
significantly different. In the end there is in principle no trivial solution, because
it is simply unknown which solution could be more optimal when only trying is a
choice.

68

7. Conclusion and Future Work
This chapter concludes the thesis in section 7.1 and gives an outlook on future
work in section 7.2.

7.1. Conclusion
The goal of the thesis was to investigate the use of existing assertions on fault
tolerance and then to advance a method that is able to find the optimal config-
uration of assertions. This was preceded by the realization in chapter 3 that the
best fault tolerance cannot necessarily be achieved by using as many assertions as
possible. In principle, an optimal configuration can be any possible configuration,
provided there is no prior knowledge about it.
In the following, the causes were explained and how the assertions are inter-

related. It was stated that assertions can detect not only failures, but also add
additional ones by their own execution. By the execution the run time and accord-
ingly also the attack surface of the program increase. An assertion must therefore
detect more failures than add new ones. However assertions are also related to
each other. There on the one hand the dependency through redundancy was
shown, which brings assertions in connection, that protect the same parts of the
memory. And on the other hand, the dependency through time overlap was also
identified, where assertions are related that occur in injections at the same time.
Proposed solutions are then discussed in chapter 4. The DETOx tool on which

this thesis is based has a significant role to play here. With this tool it is possible
to calculate configurations by recording a run with all assertions active. In this
run, all triggered assertions for the respective injections are recorded. This makes
it possible to calculate the number of failures of a configuration much faster than
executing them in reality. However also this method is too slow for programs
with a larger number of assertions. Therefore an Integer Linear Program is de-
rived, which should be able on similar bases as the computation of configurations
to find a global optimal configuration. In the following it is suggested with the
help of partitions to divide the optimization problem into smaller parts, in or-
der to simplify it. Among other things the dependencies between assertions are
considered.
In chapter 6 both the ILP and the calculation method could then be valid-

ated for a total of five different programs and two embedded operating systems.

69

Conclusion and Future Work 7.2

However, the partitioning idea was not very successful, since the assertions could
hardly be separated. However the method could possibly be suitable for substan-
tially larger programs with clearly more assertions, like the Linux Kernel. It has
already been shown for the kernel_test that the time required by an ILP for the
solution can grow over-proportionally with increasing complexity. Furthermore, it
was evaluated how accurate the calculation of configurations is in the context of
different optimization levels. It could already be shown by the previous evaluation
that for the optimization level -O0 the calculation has a high accuracy, but there
is room for improvement for -O2 and presumably also for further optimization
levels.

Over all programs from FreeRTOS and eCos an average improvement for the
optimale configurations to the configuration with all assertions active of 14% was
achieved. And the average improvement for the optimale configurations to the
configuration with all assertions inactive was 6.6%. While these improvements
are relatively moderate it should be considered that these improvements comes at
virtually no cost for the program performance. With less active assertion in the
program it becomes not only more fault tolerant, but also faster.

In conclusion, it can be stated that the method for calculating an optimal con-
figuration using an ILP, as well as the calculation of the configurations themselves,
worked for the considered programs. However, limitations must also be pointed
out. On the one hand it can be observed that when adding or removing unprotec-
ted memory areas, the optimal configuration can change. The more unprotected
memory is present, the worse an assertion tends to become and produces eventu-
ally more failures than it detects. Accordingly, a determined optimal configuration
cannot be used for similar programs and not even for the same program if the state
in it has changed or different inputs are used. Beyond that the fault tolerance
method presented here stands and falls with the presence of assertions.

In principle the procedure developed in this thesis could be applied also to
other detector mechanisms for fault detection. The problem that for a detector
conditions must be examined, which increase the run time of the program and thus
its attack surface, is a general one. However, for these detectors it must then be
possible to determine what benefit they bring and how much they cost. So there
must be, for example, clues that an instruction is that of a detector and which
one. In addition, the detector should be compact. This means that all instructions
necessary for it should be executed in one piece if possible. Otherwise it becomes
considerably more complicated to link the scattered instructions, which belong to
the detector, with it.

70

7.2 Conclusion and Future Work

7.2. Future Work
A problem highlighted in this thesis for the computation of configurations is the
inaccuracy at optimization level -O2 and others except -O0. The problem must
be solved that assertions sometimes cannot be associated with their dynamic in-
structions even though they have been executed.
Furthermore, the runtime to compute configurations with many assertions could

be improved. This has proven to be the biggest bottleneck in the evaluation.
The current method relies on deleting the assertions to be removed from each
injection individually. This is an enormously time consuming procedure when
many injections and many assertions occur. The considerations from the creation
of the ILP could be used for a faster procedure that is based on the addition
and subtraction of occurrences of assertions. In addition several computations are
parallelizable and thus also multi threading would be suitable.
In order to extend the evaluation the procedure could be applied in the future for

example to the Linux Kernel, since it contains substantially more assertions than
the programs considered here. In this regard also the partitioning of assertions
could be considered again, since it is foreseeable that an extensive ILP would
emerge. Possibly, also another previous work [11] could be used, which is to
produce a code coverage as high as possible in the Linux Kernel. For the processing
of large programs sampling is then presumably necessary, which would have to be
intigrated.
The developed procedure could be used as well in combination with assertion

generating methods. For example, a redundant variable could be created after each
potential write operation of a variable, which is then checked with an assertion
before a potential read access. Thus assertions are aggressively added to the
program. With the method developed in the thesis then the optimal selection
could be determined from these assertions.

71

Bibliography
[1] bochs. https://bochs.sourceforge.io/. Accessed: 2022-02-24.
[2] Die assert-Anweisung. https://dbs.cs.uni- duesseldorf.de/lehre/

docs/java/javabuch/html/k100044.htmll. Accessed: 2022-02-24.
[3] eCos. https://ecos.sourceware.org/. Accessed: 2022-02-24.
[4] A. E. Eiben and J. E. Smith. ‘What Is an Evolutionary Algorithm?’ In:

Introduction to Evolutionary Computing. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2015, pp. 25–48. isbn: 978-3-662-44874-8.

[5] FreeRTOS (Real-time operating system for microcontrollers). https://www.
freertos.org/. Accessed: 2022-02-24.

[6] Fred Glover and Eugene Woolsey. ‘Further Reduction of Zero-One Polyno-
mial Programming Problems to Zero-One linear Programming Problems’.
In: Operations Research 21.1 (1973), pp. 156–161. doi: 10.1287/opre.
21.1.156. eprint: https://doi.org/10.1287/opre.21.1.156. url:
https://doi.org/10.1287/opre.21.1.156.

[7] GLPK (GNU Linear Programming Kit). https://www.gnu.org/software/
glpk/. Accessed: 2022-02-24.

[8] Daniel Gomez Toro. ‘Temporal Filtering with Soft Error Detection and Cor-
rection Technique for Radiation Hardening Based on a C-element and BICS’.
PhD thesis. Dec. 2014.

[9] M. R. Guthaus et al. ‘MiBench: A Free, Commercially Representative Em-
bedded Benchmark Suite’. In: Proceedings of the Workload Characterization,
2001. WWC-4. 2001 IEEE International Workshop. WWC ’01. USA: IEEE
Computer Society, 2001, 3–14. isbn: 0780373154.

[10] Michael Lenz and Horst Schirmeier. ‘DETOx: Towards Optimal Software-
based Soft-Error Detector Configurations’. In: Proceedings of the 12th European
Dependable Computing Conference (EDCC ’16) (Gothenburg, Sweden). Fast
abstract. Sept. 2016.

[11] Alexander Lochmann, Robin Thunig and Horst Schirmeier. ‘Improving Linux-
Kernel Tests for LockDoc with Feedback-driven Fuzzing’. In: CoRR abs/2009.08768
(2020). arXiv: 2009.08768. url: https://arxiv.org/abs/2009.08768.

73

https://bochs.sourceforge.io/
https://dbs.cs.uni-duesseldorf.de/lehre/docs/java/javabuch/html/k100044.htmll
https://dbs.cs.uni-duesseldorf.de/lehre/docs/java/javabuch/html/k100044.htmll
https://ecos.sourceware.org/
https://www.freertos.org/
https://www.freertos.org/
https://doi.org/10.1287/opre.21.1.156
https://doi.org/10.1287/opre.21.1.156
https://doi.org/10.1287/opre.21.1.156
https://doi.org/10.1287/opre.21.1.156
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
https://arxiv.org/abs/2009.08768
https://arxiv.org/abs/2009.08768

Bibliography 7.2

[12] David G Luenberger, Yinyu Ye et al. Linear and nonlinear programming.
Vol. 2. Springer, 1984.

[13] B. Nicolescu, Y. Savaria and R. Velazco. ‘Software detection mechanisms
providing full coverage against single bit-flip faults’. In: IEEE Transactions
on Nuclear Science 51.6 (2004), pp. 3510–3518. doi: 10.1109/TNS.2004.
839110.

[14] Nahmsuk Oh, Subhasish Mitra and Edward J. McCluskey. ‘ED4I: Error
Detection by Diverse Data and Duplicated Instructions’. In: IEEE Trans.
Comput. (2002), 180–199.

[15] David Powell et al. ‘Estimators for Fault Tolerance Coverage Evaluation’.
In: IEEE Transactions on Computers 44 (Sept. 1995). doi: 10.1109/12.
364537.

[16] G.A. Reis et al. ‘SWIFT: software implemented fault tolerance’. In: Inter-
national Symposium on Code Generation and Optimization. 2005, pp. 243–
254. doi: 10.1109/CGO.2005.34.

[17] Horst Schirmeier. ‘Efficient Fault-Injection-based Assessment of Software-
Implemented Hardware Fault Tolerance’. Dissertation. Technische Universität
Dortmund, July 2016. doi: 10.17877/DE290R-17222.

[18] Wenn Weltraumpartikel das Smartphone abstürzen lassen. https://www.
heise . de / tp / features / Wenn - Weltraumpartikel - das - Smartphone -
abstuerzen-lassen-3630560.html. Accessed: 2022-02-24.

74

https://doi.org/10.1109/TNS.2004.839110
https://doi.org/10.1109/TNS.2004.839110
https://doi.org/10.1109/12.364537
https://doi.org/10.1109/12.364537
https://doi.org/10.1109/CGO.2005.34
https://doi.org/10.17877/DE290R-17222
https://www.heise.de/tp/features/Wenn-Weltraumpartikel-das-Smartphone-abstuerzen-lassen-3630560.html
https://www.heise.de/tp/features/Wenn-Weltraumpartikel-das-Smartphone-abstuerzen-lassen-3630560.html
https://www.heise.de/tp/features/Wenn-Weltraumpartikel-das-Smartphone-abstuerzen-lassen-3630560.html

List of Figures
2.1. Visualization alpha particle or neutron strike 4
2.2. Visualization of a fault space . 5
2.3. Visualization of an injected fault space 6
2.4. Visualization of Fail*’s assessment-cycle 8

3.1. Visualization of a fault space with an assertion 18
3.2. Visualization of a fault space with two assertions 21
3.3. Visualization of a fault space with two assertions 23

4.1. Visualization of a fault space . 26

5.1. Thesis workflow . 40
5.2. The FAIL* Plumbing Layer . 43

6.1. Blinky_Demo with random samples, hamming distance, edge cases
and optimal configuration . 52

6.2. kalarm0 test with random samples, hamming distance, edge cases
and optimal configuration . 56

6.3. kalarm0 test in the faultspace with a significant assertio 57
6.4. cnt_sem1 test with random samples, hamming distance, edge cases

and optimal configuration . 60
6.5. kernel_test with random samples, hamming distance, edge cases

and optimal configuration . 63
6.6. ILP time series of kernel_test 64

75

List of Tables
3.1. Occurrences of assertions in the Linux Kernel 12
3.2. Occurrences of assertions in the FreeRTOS Kernel 12
3.3. Occurrences of assertions in the eCos Kernel 13
3.4. Occurrences of SDCs of a quicksort algorithm with five assertions 16

6.1. Occurrences of SDCs of a quicksort algorithm with five assertions
with synthetic and real configurations 49

6.2. Runtime of the workflow steps . 51
6.3. Occurrences of SDCs of the Blinky_Demo with 279 assertions with

synthetic and real configurations 53
6.4. Runtime of the workflow steps . 54
6.5. Occurrences of SDCs of the kalarm0 test with 238 assertions with

synthetic and real configurations 58
6.6. Runtime of the workflow steps for cnt_sem1 59
6.7. Occurrences of SDCs of the cnt_sem1 test with 239 assertions with

synthetic and real configurations 61
6.8. Runtime of the workflow steps . 61
6.9. Occurrences of SDCs of the kernel_test with 279 assertions with

synthetic and real configurations 62
6.10. Occurrences of SDCs of a quicksort algorithm with five assertions

and an additional array . 65
6.11. Occurrences of SDCs of a quicksort algorithm with five assertions

with synthetic and real configurations and compiled with -O2 . . . 67
6.12. Occurrences of SDCs of the kernel_test compiled with -O2 with

282 assertions with synthetic and real configurations 68

77

A. Source Code
The source code of the kernel_test is given in the following:

#include <cyg/hal/hal_arch.h>
#include <cyg/kernel/kapi.h>
#include <cyg/infra/testcase.h>
#include <cyg/kernel/sema.hxx>

#include "cyg/kernel/fail.hxx"

static Cyg_Binary_Semaphore s0(false);

static cyg_mbox mbox;
static cyg_handle_t mbh;

#define NTHREADS 2
#define STACKSIZE CYGNUM_HAL_STACK_SIZE_MINIMUM

static cyg_handle_t handle[NTHREADS];

static cyg_thread thread_obj[NTHREADS];
static char stack[NTHREADS][STACKSIZE];

static cyg_counter counter_obj;
static cyg_handle_t counter;

static cyg_alarm alarm_obj;
static cyg_handle_t alarm;

// Outputs a character to Bochs's debug console.
void outportb(unsigned int port, unsigned char value)
{

asm volatile ("outb %%al,%%dx": :"d" (port), "a" (value));
}

void putc(char c)

I

Source Code A.0

{
outportb(0x3F8, c);

}

void print_data(char data[], unsigned len)
{

unsigned i;
for (i=0; i < len; i++) {

outportb(0x3F8, data[i]);
}

}

void swap(char *a, char *b)
{

char tmp = *a;
*a = *b;
*b = tmp;

}

void
do_test_1(cyg_addrword_t data) {

char input_data[] = {'4',')','-','m','c',':'};
unsigned data_length = sizeof(input_data)/sizeof(*input_data);

// do some work: sort input_data in place
unsigned k, l;
for (k=0; k < (data_length-1); k++) {

for (l=0; l < (data_length-k-1); l++) {
// swap elements, if need be
if (input_data[l] > input_data[l+1]) {

swap((input_data+l), (input_data+l+1));
}
char *message = new char;
*message = input_data[l];
cyg_mbox_put(mbh, (void *)message);
s0.wait();
cyg_counter_tick(counter);

}
}

// print data and signal end to Fail*
print_data(input_data, data_length);

II

A.0 Source Code

putc(s0.posted() + '0');

putc((char) cyg_counter_current_value(counter));

CYG_TEST_PASS_FINISH("Test OK");
}

void
do_test_2(cyg_addrword_t data) {

while (1) {
char *message;
message = (char *)cyg_mbox_get(mbh);
putc(*message);
delete message;
s0.post();

}
}

void alarm_handler(cyg_handle_t alarmh, cyg_addrword_t data)
{

putc('#');
}

externC void
cyg_start(void) {

CYG_TEST_INIT();

cyg_mbox_create(&mbh, &mbox);

cyg_counter_create(&counter, &counter_obj);

cyg_alarm_create(counter,
alarm_handler,
0,
&alarm,
&alarm_obj);
cyg_alarm_initialize(alarm, 0, 4);
cyg_thread_create(3,do_test_1,0,"test_1",
stack[0],sizeof(stack[0]),&handle[0],&thread_obj[0]);

III

Source Code A.0

cyg_thread_create(4,do_test_2,0,"test_2",
stack[1],sizeof(stack[1]),&handle[1],&thread_obj[1]);
cyg_thread_resume(handle[0]);
cyg_thread_resume(handle[1]);
cyg_scheduler_start();

}

IV

