
Master-Thesis

Emulator-based Fuzzing of Operating-system
State-transition Graphs

Alwin Berger
11. Juli 2022

Betreuer:
Prof. Dr.-Ing. Peter Ulbrich (Gutachter)

Dr.-Ing. Alexander Lochmann (Gutachter)

Simon Schuster, M.Sc. (Friedrich-Alexander-Universität Erlangen-Nürnberg)

Dr.-Ing. Peter Wägemann (Friedrich-Alexander-Universität Erlangen-Nürnberg)

Technische Universität Dortmund

Fakultät für Informatik

System Software Group (LS-12)

https://sys.cs.tu-dortmund.de

Abstract

The worst-case response time (WCRT) of tasks in a real-time system is a crucial property
of the system. Traditionally it is determined by analyzing the worst-case execution times
(WCET) of all tasks and system functions and combining them in a very pessimistic way
[1]. While recent static timing analysis methods have started incorporating the state
of the system into the analysis to analyze the whole system at once, they still suffer
from scalability issues and overestimation [1]. Apart from static timing analysis, there is
measurement-based timing analysis (MBTA), which measures the worst observed execution
time (WOET) [2]. Genetic algorithms are one technique MBTAs have successfully used
to generate inputs with long execution times [3], [4]. This thesis leverages another genetic
algorithm, coverage-based fuzzing, which is very successful in security focussed testing [5],
[6]. It is a grey-box approach that leverages information about a target’s control flow to
drive a genetic algorithm to maximize code coverage. This thesis uses a fuzzer guided by
the state transitions of a real-time system to generate inputs to the system which result in
high execution times.

i

ii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Research questions . 2

1.3 Structure . 2

2 Background 3

2.1 Fuzzing . 3

2.1.1 Classification of fuzzers . 3

2.1.2 Influential example: AFL . 4

2.2 Emulation . 6

2.3 Real-Time Operating Systems . 6

2.4 System States . 7

2.5 Worst-case timing analysis . 8

3 Related Work 11

4 Problem Analysis 15

5 Concept 17

5.1 System Model . 17

5.2 Fuzzing for execution time . 18

5.3 Utilizing the state transition graph . 19

5.4 Fuzzing for Interrupts . 23

5.5 Fuzzing with known edge counts . 23

5.6 Resume . 24

6 Implementation 25

6.1 Overview . 25

6.2 Real-Time Operating System . 27

6.3 Fuzzer . 28

6.4 Emulation . 30

iii

iv CONTENTS

7 Evaluation 33
7.1 Evaluation setup . 33
7.2 Test Case . 35
7.3 Configurations for comparison . 37
7.4 Comparison of Fuzzing Methods . 37
7.5 Fuzzing with interrupts . 44
7.6 Scalability . 45
7.7 Searching Witness Inputs . 46
7.8 Resume . 47

8 Discussion and Conclusion 49
8.1 Discussion . 49
8.2 Summary . 51
8.3 Future Work . 52

List of Figures 53

Bibliography 55

Affidavit 59

Chapter 1

Introduction

1.1 Motivation

The worst-case execution time of a program and the worst-case response time of a task in a
real-time system are crucial to timeliness guarantees of real-time tasks [1]. State-of-the-art
static timing analysis can be used to construct a relatively tight safe upper bound for a
task’s WCET [2], while the WCRT of a task in a real-time operating system (RTOS) that
schedules multiple tasks is difficult to estimate [7]. A decoupled analysis of the task and
RTOS code can lead to very pessimistic estimates for the tasks WCRT. Progress towards
a global timing analysis has been made in recent years by integrating the flow between
possible system states into the timing analysis, but pessimism is still an issue[1]. Since the
worst-case input for a system is usually unknown it is also non-trivial to even quantify the
pessimism. Apart from static timing analysis, there is also dynamic timing analysis, which
executes a program and observes its execution time. While a dynamic timing analysis by
itself only derives lower bounds for the WCET it does have the advantage of providing
a witness input for its worst observed execution time. Those witnesses can be useful
during the design phase of real-time systems [3] and allow estimating how pessimistic a
result from a static timing analyzer is. For these reasons, this thesis explores a dynamic
testing method that searches for the worst-case inputs to a real-time system with multiple
interdependent tasks. The technique chosen as the base for this is coverage-guided fuzzing,
a technique generating test cases based on a genetic algorithm guided by code coverage [5],
[8]. Fuzzing is already a very popular dynamic analysis method in security research. For
this thesis, it is adapted to work with coverage in the state transition graph of an RTOS,
with additional state-aware optimizations added. To my knowledge, this thesis presents
the first approach to apply the grey-box techniques of fuzzing to generating inputs which
maximize the whole-system execution-/response-time for an RTOS with multiple tasks.

1

2 CHAPTER 1. INTRODUCTION

1.2 Research questions

This thesis aims to answer the following main questions: Are coverage-guided fuzzing
techniques effective in discovering system inputs with extremely long execution times?
Assuming a static analysis yields upper bounds on the number of executions for each edge
between basic blocks (BB) in the code. Can these frequencies guide the fuzzer towards
witness inputs that match these frequencies and therefore are worst-case inputs? Can the
coverage guidance be improved by extending it to a state transition graph (STG) of the
system, in analogy to state transition graphs used by static timing analyzers? Additionally,
some more technical sub-problems need to be solved. For example: How could the system
state be extracted during the execution of a system and in what way are they integrated
into a state transition graph.

1.3 Structure

This thesis uses multiple established concepts such as fuzzing, RTOS and emulation. An
overview of each is presented in Chapter 2. The existing related work around whole system
timing analysis and fuzzing is examined in Chapter 3. Chapter 4 details the problem do-
main and puts the research questions and methods used in context. Chapters 5 and 6 focus
on the technique developed for this thesis in abstract and implementation respectively. A
test scenario for the technique and evaluation of the results can be found in Chapter 7.
Chapter 8 summarizes the results and discusses future research directions for the concepts
of this thesis.

Chapter 2

Background

This thesis combines multiple techniques into a novel approach for generating inputs close
to the worst-case input of a real-time system. The most important technique is fuzz testing
(fuzzing for short), which is used to generate test inputs for programs. Those test inputs
are then passed to a real-time system on an emulated machine. During execution, the
RTOS is traced and a system state graph is constructed. The following sections explain
those basic techniques in more detail.

2.1 Fuzzing

Fuzzing is the process of testing programs for crashes, bugs and vulnerabilities using a
large number of randomly generated inputs. A simple setup for fuzzing consists of a target
program, an optional monitor to extract runtime information from the target, a generator
for test cases and a detector for the bugs [8]. The way fuzzers extract and use information
allows for classifying them into different classes, detailed in the next paragraph.

2.1.1 Classification of fuzzers

Fuzzers are classified as black-box, white-box or grey-box depending on their insight into
the target. What follows is a short description of the capabilities of each, based on the
literature review by Liang, Pei, Jia, et al. [8].
Black-box fuzzers operate without any knowledge of the target. Instead, they blindly
apply rules, such as mutating a known valid input or generating semi-valid inputs. Such
mutations can be simple byte or bit operations (e.g. copy, remove, flip bits). Generators
can use grammars or other target-specific methods to generate inputs that are valid enough
to pass the initial checks of the target program.
White-box fuzzers by contrast have full knowledge of the target’s logic. They typically use
dynamic symbolic execution (known as concolic execution) to explore new paths through a
program systematically. They do this by recording the conditionals an execution has taken

3

4 CHAPTER 2. BACKGROUND

and collecting the constraints of the conditionals using symbolic execution. By negating
some conditionals and solving for their conjunction using a satisfiability modulo theories
(SMT) solver, they generate inputs with different paths to maximize the desired coverage
criteria (like statement-, condition- or even path-coverage) over the control flow graph
(CFG).
Grey-box fuzzing is in a middle ground between both. It collects information such as
code coverage at runtime and uses this information during mutation to achieve its goal
faster. Code coverage can be measured and used by the fuzzer to guide the generation of
new cases. A detailed example of a fuzzer using this technique can be found in the next
section. Another grey-box technique is taint analysis, which traces the data flow of input
fields and allows more directed mutations.

2.1.2 Influential example: AFL

A popular and influential example for a grey-box fuzzer is American Fuzzy Lop (AFL) [5].
It uses a simple genetic algorithm guided by edge coverage, which the authors summarize
as the following steps [5]:

1. Load user-supplied initial test cases into the queue

2. Take the next input file from the queue

3. Attempt to trim the test case to the smallest size that doesn’t alter the measured
behavior of the program

4. If any of the generated mutations resulted in a new state transition recorded by the
instrumentation, add mutated output as a new entry in the queue

5. Go to 2

It acquires information about the code coverage by including instrumentation in the target
at compile time. Alternatively and more relevant to this thesis it allows using an instru-
mented version of the popular QEMU emulator to extract coverage information from an
unmodified binary at runtime [9]. The collected information roughly equates to counters
on the transition between basic blocks in a control flow graph.
The rest of the thesis refers to the components of a fuzzer in the terms used by the LibAFL
[10], which is an AFL-inspired library for building modular fuzzers:

• Target: The program under testing

• Input: Some data used as input to the target, sometimes referred to as test case
when combined with metadata about the resulting execution

• Executor: The environment the target code is run in, may reset the target after each
run

2.1. FUZZING 5

• Observer: A component that extracts information about the target from the executor

• Feedback: Some function that uses the observers and an internal state to classify an
input as interesting or not

• Metadata: Information collected about an input’s execution

• Corpus: Collection of interesting inputs for further analysis, including some prioriti-
zation algorithm

• Mutator: Applies a mutation to an input, optionally uses observed information from
the target

• Mutation stage: Collection of mutators with optional logic for choosing which ones
to apply

• Objective: Determines if an input reached the fuzzing goal

• Solutions: Collection of inputs that reach the fuzzing goal

Target

Include
if interesting

Corpus

Mutation Stage

Attach
Metadata

Input Metadata

Solutions
Input

Objective

Executor

Scheduler

Mutator

Observer
Feedback

Figure 2.1: Abstract overview of LibAFL-based fuzzer. Arrows indicate information flow. Overall
a test case is selected, mutated into a new input, executed, observed, rated and potentially added
to the corpus or solutions.

6 CHAPTER 2. BACKGROUND

Figure 2.1 shows how these components combine into a LibAFL-based fuzzer. A test case is
selected from the corpus by some scheduling algorithm, the input is mutated using different
mutators, injected in the target and executed. The results of the execution are observed,
and the input is rated using feedbacks. It maybe considered interesting and added to the
corpus, or it may even fit an objective and be added to the collection of solutions.

2.2 Emulation

Emulators are used for simulating a specific machine for software to run on. Which details
of the target machine are simulated differ between emulators for different use-cases. QEMU
is a popular general-purpose emulator (and hypervisor) with support for many CPU ar-
chitectures and devices [9]. It is relatively performant but does not simulate hardware
details like the memory hierarchy or processor pipeline. Other tools, such as PTLsim [11]
allow accurate simulation of all aspects of CPUs (x86-64 in this case). While this would
give very accurate execution time measurements, this thesis describes an approach using
QEMU instead, as it integrates well with the fuzzing loop.
As mentioned in the previous section emulators may be used in fuzzers to instrument un-
modified binary programs. This allows for avoiding probe effects from instrumentation
inside the target code, which is relevant when targeting execution time. In case of AFL
using QEMU this works by exploiting the way QEMU translates target instructions [5].
QEMU collects instructions into so-called translation blocks (TB), which consist of branch-
free sequences of instructions [9]. These roughly correspond to basic blocks in the binaries
control flow graph, which allows a fuzzer like AFL to easily trace CFG edges when TBs are
executed. QEMU also allows counting the number of instructions executed, which serves
as the measurement of execution time in this thesis.
QEMU supports emulating complete machines (referred to as softmmu or system-mode)
or running the target application as a user space program while translating all system calls
(referred to as user-mode). The work presented in this thesis modifies existing fuzzing
instrumentation to use system-mode.

2.3 Real-Time Operating Systems

Real-time systems have to meet timing requirements, which means they need to complete
their tasks within a deadline and respond to external events quickly [12]. The strictness
of this requirement subdivides real-time systems into hard and soft ones. Hard ones need
to meet the requirements in every instance, soft ones only need to meet them most of
the time [12]. That is because a deadline miss in a hard real-time system can result in
a catastrophic failure, while a deadline miss in a soft real-time system only degrades or
nullifies the usefulness of the result [13].

2.4. SYSTEM STATES 7

A real-time operating system is specialized operating system for use in real-time systems.
They usually host multiple tasks concurrently, which need to be scheduled in a way that
ensures that all deadlines are met. The common recurrent task model assumes tasks are
released periodically and need to meet deadlines relative to their time of release. Once
tasks are released they can run, get preempted or block until they terminate, which needs
to happen before their deadline [13]. When running for enough periods a system like this
schedules the tasks in a repeating pattern. This is the hyperperiod, which is the least
common multiple of the periods [14].
Scheduling under this scenario can be done using multiple algorithms, which are out of the
scope of this overview. For simplicity, this thesis assumes the RTOS uses fixed-priority,
preemptive scheduling, which means each task gets assigned a priority during the system
design phase using some schedulability analysis. During runtime, tasks of lower priority
can be preempted by higher priority ones [12].
Apart from their common focus on task scheduling, current RTOSes have varied features
and use cases, which put them on a wide scale of complexity. On the complex side, a
few systems provide features and APIs similar to general-purpose operating systems, such
as process isolation using virtual address spaces and filesystems. [12]. There are even
multiple efforts to enable real-time capabilities in Linux1, mainly by allowing the kernel to
be preempted [15]. On the other end of the spectrum are small kernels, typically running in
the same address space with their tasks [12]. An example of this is FreeRTOS [16], which
is a bare-bones kernel with a small API. It uses priority-based preemptive scheduling and
features different synchronization mechanisms between tasks, such as semaphores, mutexes
(with priority inheritance), queues and notifications. While it supports memory protection
on some platforms it usually uses a single address space [12], [16].
The differences in design between single and multiple virtual address spaces influence how
a task interacts with the OS. Tasks isolated by virtual address spaces in general purpose
operating systems (GPOS) usually use system calls, which causes switching to a privileged
execution mode with access to the whole memory space [15]. In single address space
systems like FreeRTOS on the other hand kernel functions may be called directly without
necessarily causing a mode change [16].

2.4 System States

CFGs capture the logic of a function. They are directed graphs consisting of blocks of
linear code (basic blocks or BB for short) and are commonly used for static analysis of
programs. Edges between two basic blocks express a possible flow of execution from one to
the next [17]. The graph of a function has only one entry point. A whole program can be
expressed by an interprocedural control-flow graph (ICFG), which contains all basic blocks

1https://kernel.org/

8 CHAPTER 2. BACKGROUND

of its function’s CFGs [18].
This concept was extended by Dietrich, Hoffmann, and Lohmann [18] into a global control-
flow graph (GCFG) for systems with multiple tasks. The authors note that each scheduler
might switch from a BB in one task to a BB in another task. This can be expressed in
a GCFG, where two BBs are connected by an edge if and only if they may be executed
directly after each other on real hardware. To construct the GCFG the authors partitioned
BB into larger atomic basic blocks (ABB), which are regions in the CFGs with a single
entry and exit BB.
The ABBs can be used to define a system state, which consists of the currently running
ABB, the status of all tasks in the system and more information, such as the status of
shared resources. These system states form a state transition graph, which contains all
possible system states and transitions between them. The authors enumerated this graph
using abstract interpretation.

2.5 Worst-case timing analysis

Hard real-time systems need to satisfy timing constraints. The Verification of the con-
straints requires safe upper bounds for the worst-case execution time of the running pro-
grams. The WCET of a program can be estimated using timing analysis, either static,
measurement-based or a hybrid of both. Static timing analysis overestimates the WCET
to derive safe upper bounds, while dynamic methods generally underestimate it and as
such are not suitable for deriving safe bounds [2].

Static timing analysis

Static timing analysis usually follows a multi-stage process to analyze all possible control
flows in combination with a hardware model to derive execution time bounds [2], [19],
[20]. Figure 2.2 depicts how this process typically works [21]. It starts by constructing the
control flow graph of a program. Next up, ranges of values for local variables and registers
can be analyzed, which is optional but useful for the next step to determine loop bounds.
This can be achieved using abstract interpretation. The next mandatory step is control
flow analysis, which produces flow facts about the transitions in the CFG. Afterward,
the processor behavior is analyzed, by using a model of the hardware to analyze possible
states of the processor and caches to derive execution-time bounds per instruction. The
bounds are based on possible execution histories leading to them. The final stage combines
the flow facts with the timing bounds from the hardware model. The common technique
for performing this calculation is called implicit path enumeration technique (IPET), first
introduced by Li and Malik [22]. It combines the flow facts and time bounds into arithmetic
constraints. These are used to maximize the sum of the product of execution count and

2.5. WORST-CASE TIMING ANALYSIS 9

time of basic blocks using integer linear programming (ILP)[2], [22]. The result is a safe
upper bound for the WCET.

Loop Analysis and Unfolding

Control-Flow-Graph (CFG)
Reconstruction

Executable Binary
Program

Cache/Pipeline
Analyzer

Value
Analyzer

Static Analysis

Micro-Architecture
Abstraction

Loop Bounds

Timing
Information

WCET Visualization
and Analysis

ILP-Generator

ILP-Solver

Evaluation

Path Analysis

Figure 2.2: The static analysis WCET pipeline. Inputs consist of the binary program, loop
bounds and an abstraction of the target micro-architecture. Figure based on [21].

Measurement-based timing analysis

Measurement-based methods execute the program on hardware or accurate simulators to
measure the execution time [2]. This is often used for end-to-end tests with a subset of all
inputs. Such dynamic tests produce a worst observed execution time, which is generally
not a safe bound for the WCET unless the worst-case input is in the set of test cases.
Static and measurement-based methods can also be combined into hybrid methods, which
produce tighter estimates compared to static analysis of the micro architecture, but remain
safe bounds [2], [23].

10 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

The approach of this thesis leverages coverage-guided fuzzing to generate inputs that ap-
proximate the worst-case (in terms of execution time) for a real-time system with multiple
concurrent tasks. While to my knowledge there is no previous literature on this combina-
tion of techniques and goal, it sits in an intersection between worst-case timing analysis
and fuzz testing, two well-studied fields.
As referenced in Chapter 2 determining the WCET for single programs is well studied using
static and measurement-based timing analysis. The static analysis pipeline as described in
that chapter is common amongst many static timing analyzers, aiT for example, which is
a commercial tool to analyze single applications from a binary level [21]. Some following
paragraphs focus on extensions to the basic technique which either extend the analysis to
a wider scope or extend it to derive tighter bounds.

Measurement-based timing analysis

Measurement-based timing analysis executes a subset of possible inputs and estimates the
WCET from the worst observed execution time. It alone does not deliver safe upper bounds
for the WCET. Generating tests that optimize for execution time can still produce close
estimates and be useful during the design phase of a system, as pointed out by Mueller and
Wegener [3] in 2001. The authors propose a genetic algorithm, which works by selecting
the longest running test cases for a program, recombining their parameters and randomly
applying mutations to some inputs. Khan and Bate [4] proposed an extended genetic
algorithm, jointly optimizing some combinations of execution time, branch mispredictions,
data cache misses and instruction cache misses. The authors note that they found no
optimal set of optimization criteria for every case, while simply using a wide range of
criteria leads to bad results as well.

11

12 CHAPTER 3. RELATED WORK

Hybrid methods

One option to improve upon the standard static WCET estimation is to combine it with
measurements on hardware or simulators into a hybrid method. One such example of a
hybrid method is TimeWeaver, which combines static analysis for values and paths with
measurements of short code snippets on real hardware, instead of pessimistic estimates
from abstract hardware models [23].

System-state aware analysis

WCET analysis is mostly limited to uninterrupted executions of tasks, while the worst-
case response time of real-time tasks in a larger real-time system is often more relevant
and complex[1], [2]. The WCRT includes overheads from the real-time operating system
and interferences by other tasks. While this can be analyzed by combining the WCETs
of multiple tasks with the kernel overhead, a separate analysis of the application and
kernel can lead to very pessimistic results [1]. One method to address this pessimism
was developed by Dietrich, Wägemann, Ulbrich, et al. [1], which incorporates the state
transition graph (as explained in Chapter 2) into an IPET definition. It achieves this by
using flow facts about the system’s state transition graph. It can even include the effects
of interrupts, as long as they are bounded by a minimum inter-arrival time. As a downside
of the STG focus its analysis considers paths that become infeasible through the thread-
local control flow [1]. It is also based on the assumptions that not only all objects (tasks,
resources and interrupt service routines (ISR)) are known in advance, but also the call
locations and arguments to all functions interacting with them. These assumptions limit
the approach to applications where this information can be determined statically.
A later work by [20] uses annotation of the OS on a source level to aid the static analysis
in analyzing more generic RTOSes, where necessary information can not be derived from
the global control flow alone. The approach uses the annotations during the path-analysis
step of the common static timing analysis pipeline. It consists of multiple layers itself.
First uses system facts, which include general knowledge about the whole system, such
as the priorities of the tasks. These get propagated into the source annotations, which
are used to address three main challenges [24]: Annotate indirect function calls, use state-
dependent annotation to eliminate infeasible paths based on the system state and lastly,
use application knowledge and system facts for bound computations. The last layer is
the WCET analysis, which constructs the STG, derives additional system facts from it,
and uses the annotation layer to derive control-flow facts describing a given system state.
From there on out an IPET-based analysis is carried out. Another later work by the same
authors introduces a more expressive annotation language, that features custom expressions
for better context-sensitive analysis [25].

13

Multitasking overhead

Operating systems with multiple tasks have to deal with multiple sources of overhead,
regardless of the scheduling algorithm. These sources include preemption or migration,
executing the scheduling algorithm and context switching between tasks [26]. In particular
costs for preemption and migration are difficult to predict, because their costs increase with
the working-set size of the tasks. The working set is the collection of memory segments
recently used by the task [27]. Migration of a task means migrating execution to a different
core on a multi-threading machine. The costs incurred by preemption and migration are
dominated by the time it takes to re-populate the cache, and thus increase with the size of
the working set [26]. Research into migration found that simply copying the whole cache
content over to the new cache is inadequate to address this cost, but capturing the access
behavior of a task to prefetch data into the new cache significantly reduces migration costs
[28]. Since the effect caused by preemption effectively increases the WCET of tasks in a
real-time system, its effects on the schedulability analysis of a task set in a real-time system
have been studied [29]. The resulting analysis techniques determine the schedulability
under some algorithm (e.g. earliest deadline first), by assuming an additional component
to each task’s WCET, based on its actively used working set and the total number of
segments it loads into the cache [29]. This schedulability analysis is more advanced than
assuming a fixed overhead for all preemptions, but is still relatively pessimistic and not
system-state aware in the sense that it takes the interprocedural control flow into account
for the individual WCETs.
Further research focuses on searching for ideal migration points over the lifetime of a task,
which allow for good overall schedulability and low overhead. This is important because
the active working-set is not constant during a task’s lifetime and assuming a set of fixed
migration points reduces pessimism about the working-set size [30]. Ideal migration-point
candidates should be very granular to migrate at the times required for scheduling while
minimizing the active working set at that point [31]. The active working set can be
determined using compile-time analysis [32]. This is especially important in non-uniform
memory architectures (NUMA), because the cost of loading the working-set to the target
depends on the architecture and between which cores the migration is performed [32]. In
uniform memory architectures by contrast the access latencies are more predictable.
Analysis of preemption has to be treated differently, mostly because effects of a NUMA
are different [32], yet the active working-set size and its development over time are still
relevant.

Advanced fuzzing

In the area of security meanwhile, testing software for bugs using automated test gen-
eration (called fuzzing) is very common. One popular technique for efficient fuzzing is

14 CHAPTER 3. RELATED WORK

called coverage-based fuzzing, in which coverage information of generated test cases is
used in a genetic algorithm to maximize the test coverage and therefore bug frequency [8].
The popular fuzzer ALF is an example using this technique [5]. It serves as the base for
numerous extended fuzzers specialized for different targets and using different heuristics.
One of them is kernel-AFL (kAFL) [33], which is specialized in fuzzing kernels, instead of
user-space programs. kAFL executes its target under a hypervisor and uses Intel’s Proces-
sor Trace technology to trace the control flow in a low-overhead and target-independent
way. The authors identify the non-determinism introduced by interrupts and the state
fullness of the system as obstacles to coverage-guided fuzzing of kernels. They address the
non-determinism of interrupts by filtering out code transitions caused by them. Nyx is a
fuzzer targeting hypervisors by running them nested inside a hypervisor with extremely
quick snapshot restoration [34]. According to the authors, it achieves multiple thousands
of restores per second on commodity hardware and can also be used to fuzz systems in-
cluding kernels and applications. The snapshot-based rests eliminate differences in the
state between runs and allow very complicated targets. A different, yet important part
of the fuzzing process is the selection of mutators. The authors of the MOPT mutation
scheduler noted, that the efficiency of AFL’s default mutators differs between test cases
and introduced a scheduler that measures the efficiency of each mutator and derives a
probability distribution for choosing the next mutator to apply [35]. The approach of this
thesis combines techniques from the areas mentioned above into a fuzzer guided by system
state coverage to generate inputs maximizing the worst observed execution time.

Chapter 4

Problem Analysis

As described in Chapter 3, the problem of finding the WCET of an application in isolation is
well explored using static and measurement timing analysis. As pointed out by Schneider
[7] in 2002, analyzing the WCET of RTOS services and applications in isolation is not
very effective. On the RTOS side lacking information about call parameters and context
for example lead to pessimistic analysis. From the application perspective, the presence of
multitasking raises issues wherever memory or other resources are shared because values for
loop bounds and branches might be changed by interfering tasks, which again is dependent
on the scheduler [7]. Since then static analyzers have started integrating aspects of the
RTOS into a whole system WCRT analysis [1]. At first by tailoring the OS to be suited
for a static analysis based on the state transitions and later to use user-provided source
annotations to derive the necessary control flow facts [1], [24], [25]. To my knowledge
measurement-based approaches currently do not leverage system awareness to optimize
their searches.
A disadvantage of these static analysis methods is poor scalability due to the large number
of states which need to be considered, even if many of them are infeasible in practice
[1]. Measurement-based methods only encounter a small subset of the feasible states and
have to optimize their search. This thesis focuses on measurement-based methods due
to their better scaling potential. As mentioned in Chapter 3, genetic algorithms have
been successfully used for searching long-executing inputs in the past [3], [4]. A potential
problem for such an algorithm in a whole system setting is to explore the possible control
flows sufficiently using a limited number of inputs per generation. In other contexts, such
as finding runtime errors, dynamic testing using coverage-guided fuzzing is very popular
and successful [6]. It uses a genetic algorithm to efficiently cover all possible branches in
the control flow and keep the relevant inputs in its corpus and should therefore be better
suited to explore a system-wide control flow than a black-box approach while being easier
to implement than white-box techniques. This raises the main questions that this thesis
aims to address. The first is whether coverage-guided fuzzing techniques are also effective

15

16 CHAPTER 4. PROBLEM ANALYSIS

in discovering the worst-case inputs of real-time systems. The other is if such an approach
can be improved by considering the global control flow between multiple tasks and using
their coverage to guide the fuzzer. A third, less central question of this thesis is whether
execution counts derived from a theoretical IPET-based static analyzer could be used as an
alternative guiding mechanism for the fuzzer to produce a witness input for the statically
determined edges.
As the question about the global control flow implies, this thesis focuses on execution
time differences caused by the global control flow between tasks and interrupts. Hardware
effects are disregarded. More details about the system model used for this thesis can be
found in Section 5.1. Chapter 5 describes the fuzzing concept in detail, while Chapter
6 describe an implementation of these concepts. An evaluation of the implementation in
terms of the guiding questions can be found in Chapter 7.

Chapter 5

Concept

This chapter describes how system-aware coverage-based fuzzing can be used to address
the problems described in Chapter 4, namely finding an input close to the WCRT of a small
real-time system. It describes the methods and reasoning for them only in the abstract,
implementation details can be found in Chapter 6. The first section of this chapter is
dedicated to the model of the system used in this thesis and the implementation of its
approaches.

5.1 System Model

This thesis focuses on execution time differences caused by the global control flow between
tasks and interrupts, as well as scheduling while disregarding hardware effects. The model
used for this purpose assumes an RTOS (the implementation uses a library OS) with
periodic and aperiodic, fixed priority, preemptive tasks with task notifications and message
queue, in addition to interrupt handling. It is running on an emulator which does not
simulate hardware effects such as caches and execution pipelines. The emulated machine
is a uniprocessor system. The system runs until reaching the end of the first hyperperiod,
which marks the WCRT of the system’s main task. For simplicity’s sake this thesis makes
some assumptions about the effects of an interrupt:
To keep the input simple and things like minimum inter-arrival time out of scope, this
thesis assumes only one kind of incoming IRQ with a minimum inter-arrival time longer
than the hyperperiod of the system. Since the approach in this thesis is a state-aware
fuzzer it is necessary to ensure the effects of interrupts are visible in the state transition
graph. Therefore, an additional assumption is made, which is that the only effect of the
interrupt handler on the system state is to unblock/enable an aperiodic task, which would
then show up as a state transition when the task runs. To limit the growth of the STG
one last assumption is made, which is that the priority of the interrupt-activated task is
relatively low compared to the other tasks. This limits the number of branches in the STG

17

18 CHAPTER 5. CONCEPT

caused by different interrupt times since only a few tasks can be preempted because of
it. While this last assumption is not necessary for the concepts described in this thesis to
work, it is advantageous to them. No further assumptions about the effects of interrupts
are made.
Under this hardware model, the main timing effects caused by interrupts are the overhead
of interrupt handling, scheduling and context switching, as well as the execution time of
the newly activated task, if it causes a priority inversion. A priority inversion occurs if a
middle priority task (activated by the interrupt in this case) preempts a low priority task
which is blocking a high-priority task [12].

5.2 Fuzzing for execution time

The general setup and software used for this thesis originate from fuzzers used for finding
runtime errors and security bugs. Fortunately the common fuzzing loop (see Figure 2.1) is
very similar to existing genetic execution time maximization methods discussed in Chapter
3 [3]. In both cases, inputs need to be executed, rated, mutated and prioritized in some
way. Figure 2.1 shows an abstract overview of a generic fuzzer setup. The main difference
is the rating and prioritization, which translates to the feedback and corpus scheduler
components. Common fuzzers keep inputs in their corpus for at least as long as they cover
a unique code path, instead of only keeping a fixed number of inputs per generation. This
is connected with the rating since the feedback in coverage-based fuzzers decides not only
on a fitness function but also whether a new edge is covered.
The most straightforward approach to create a coverage-based fuzzer for execution time is
to change the feedback and scheduler. The feedback has to reward inputs that increase the
number of times a control flow edge is executed, not just when an edge is executed for the
first time. Also, the scheduler needs to prioritize inputs with high execution times in some
way when selecting the next input from the corpus. Choosing only the top-performing
one from the corpus would drastically limit the choices and increase the risk of getting
stuck in a local maximum. An alternative is to prioritize all inputs which reach the highest
execution time amongst some subsets of inputs. For example one subset for each edge in
the CFG (see Chapter 6 for details [36]). Figure 5.1 shows an overview of this concept,
where the changed components are highlighted when compared to a basic fuzzer. The
new components are a feedback rewarding increases in the execution count of edges, and
a scheduler that prioritizes the test cases with the highest execution time amongst any set
of inputs that cover a specific CFG edge each.
The approach of this thesis also extends beyond the coverage information typically used,

which are execution counts (or just one bit) of the edges between basic blocks in the CFG.
For this purpose, the execution times and a measured system state transition coverage are
combined to rate inputs for inclusion in the corpus and prioritization of inputs from the

5.3. UTILIZING THE STATE TRANSITION GRAPH 19

Target

Include
if interesting

Corpus

Mutation Stage

Attach
Metadata

Input MetadataTest Case

Executor

Scheduler

Mutator

Observer
Feedback

Time-
Maximizing
Scheduler

Edge Observer
Edge-Increase
Feedback

Figure 5.1: Abstract overview of LibAFL-based fuzzer which maximizes execution time. Arrows
indicate information flow. Blue highlights are execution time focussed changes compared to a
generic AFL-like fuzzer. The feedback has to reward all increasing edge-counts and the scheduler
has to prioritize long-running cases.

corpus. For the feedback, this means including an input to the corpus if it increases the
execution time of a system-state path or a component of it. The scheduler is preferring
inputs that trigger the worst execution time for a path or component of one. More details
about how system state transitions are used can be found in the next section.

5.3 Utilizing the state transition graph

As described in Chapter 2, CFGs can be extended to a graph of system states. This section
describes how the necessary information is captured and utilized, as well as the effects of
interrupts on the STG.

Tracing state transitions

The concepts of atomic basic blocks, system states and state transitions were described in
Chapter 2. Unlike the concepts introduced by static analysis approaches, the approach of
this thesis does not construct the CFG or the complete STG statically. The lack of CFG
means ABBs are also not known to the analysis and a different method for distinguishing
states is needed. For the purpose of this thesis, the execution is split at the context

20 CHAPTER 5. CONCEPT

switches between tasks. Such a switch can be caused by calling an RTOS routine or a
timer or other asynchronous event. At those points the following information about the
state and previous block gets collected:

1. Current task’s name

2. Current task’s priority

3. Current task’s base priority

4. Current task’s number of mutexes held

5. Current task’s task notification state and value

6. Info 1-5 for each task in the ready state

7. PC before last jump/system call, which is an approximation for the ABB boundaries

Each resulting block of execution thus contains only the execution of the one active task
and RTOS kernel routines. Figure 5.2 depicts a fuzzer in which the executor hooks into

TargetInput Metadata

Attach
Metadata

Include
if interesting

Corpus

Mutation Stage

RTOS Kernel

Task A
Prio 2
Blocked

Task B
Prio 1
Ready

Task C
Prio 1
Running

Notify(Task A, 1)

Executor

Scheduler

Mutator

Observer
Feedback

Figure 5.2: Abstract overview of a fuzzer using system-state information. The real-time system
shown in the middle is in a state where some Task C is running and just sent a notification to a
higher priority Task A using the RTOS API. An observer collects those states.

the execution of the target at the moment of a context switch, caused by a notification

5.3. UTILIZING THE STATE TRANSITION GRAPH 21

that unblocks a task of higher priority.
Multiple state traces can be combined into an STG, like the one depicted in Figure 5.3. It

Start Voter
0x100

End
Sample
0xA00

Sample
0xB00

ReplA Voter
0x200

Sample
0xA10 ReplB

Voter
0xD00

Voter
0xC00 ReplC

Voter
0xE00

Figure 5.3: Example STG of a small triple modular redundant application. Three paths are
possible depending on the availability of data for sampling and disagreement between replicates A
and B. Priorities from high to low: Voter, ReplA, ReplB, ReplC, Sampler. PC address annotations
below names signify a difference in local control flow, which cause changes in the global control
flow.

represents a small application that processes input data using three redundant replicates
(triple modular redundancy (TMR)), of which the third one is optionally activated when
the first two disagree. It can follow one of three paths. Either terminate early during
data sampling due to lacking data, finish the run after two replicates or use the third one.
Branches in a state block are highlighted by different program counters.
In STGs used in this thesis, different paths with the same prefix and suffix are never merged
(until the common end state), which means the directed graph is almost a tree. This was
done for simplicity’s sake and because none of the mutators proposed in the next paragraph
would benefit from merging branches. Apart from constructing a graph, it is also possible
to collect and use the traces (paths in the STG) of the states as is for coverage.

Maximizing execution time using the STG

To maximize the total execution time it is necessary to trigger the worst possible task
activation pattern and thus path through the system state graph, as well as maximize each
task’s execution time within the confines of that path. The approach of this thesis uses
coverage-guided fuzzing to explore the complete graph and maximize each path’s execution
time. The necessary state information is gathered from the emulator running the target as
described in the previous paragraph. As mentioned in the previous section, the collected
information is used by multiple heuristics for rating, mutating and scheduling of inputs:
The rating is performed by a feedback function that identifies which part of the system
state graph an input covers, and based on the execution time decides if the input should
be included in the corpus. This coverage over the graph may be interpreted in different
ways, analogous to path and statement coverage in classical CFGs. The simplest method
is to treat each complete system state path as one category for coverage and update the
corpus whenever the worst observed execution time for a category increases. This does not
require the graph to be present as a data structure, since a hash over the trace is sufficient
to distinguish different paths. The other, more granular approach treats each system state

22 CHAPTER 5. CONCEPT

as a category and updates the corpus if even just one block has an increased execution
time.
The common algorithm for selecting preferred inputs from the corpus for mutation (as used
in LibAFL [36]) works by selecting an input that has the worst observed execution time
of all inputs in one of the coverage categories. This can be achieved with either complete
path traces or single states in the graph. Both the feedback and corpus prioritization are
based on existing coverage-guided fuzzers, which would take each unique CFG edge as such
a category [36].

Target

Include
if interesting

Corpus

Mutation Stage

Attach
Metadata

Input Metadata

RTOS Kernel

Task A
Prio 2
Blocked

Task B
Prio 1
Ready

Task C
Prio 1
Running

Notify(Task A, 1)

RTOS Kernel

Task A

Task B Task C

Call(...)
Test Case

Emulator

Scheduler

Mutator

Observer
Feedback

State Observer
State/Graph Time
Feedback

Graph-based Mutator

Time-
Maximizing
Scheduler

Figure 5.4: A System-State aware fuzzer to maximize execution time. Arrows indicate informa-
tion flow. Differences to Figure 5.1 are highlighted in blue.

The last component of the fuzzer which can use the information from the system state
graph is the mutation stage. This thesis explores three different mutators specifically:
The simplest one randomly replaces one input snippet or a complete suffix. Another
mutator manipulates when an interrupt will fire and causes an asynchronous event to
occur. Details on interrupts and their effects follow in the next section. The most advanced
proposed mutator combines snippets from different inputs on the same trace to maximize
the execution time of the whole trace. This mutator in particular is very powerful under
certain assumptions. The first assumption is that an input to the system is read in small
chunks over the course of the execution and the progress can be tracked. This tracking of
which input was read during which part of the execution trace enables a primitive form

5.4. FUZZING FOR INTERRUPTS 23

of taint analysis over the system state graph. This allows more targeted changes in the
state path by only manipulating the inputs up to a point of interest. It becomes yet
more powerful under the second assumption, that the behavior of a state block is largely
dependent on the last part of the input read. If this assumption is met it allows freely
choosing the worst input snippets from all inputs within the same state path. While the
first assumption is largely dependent on the input model of the system, the second one is
very strict and can not be guaranteed generally.
Figure 5.4 shows an overview of a fuzzer using either the graph or state paths as coverage.
Compared to the concept based on CFG-edges this one needs a specialized observer to
record the states of an execution. The new feedback function and scheduler are based on
either state-path or graph coverage, as described. The graph-based mutators are placed in
the list of possible mutations which can be applied.

5.4 Fuzzing for Interrupts

Real-time systems may need to handle and respond to some interrupt requests (IRQ) from
external sources, be it from sensors or communication for example. Therefore, the executor
of the fuzzer needs the ability to activate the virtual IRQs of the target at certain times.
The straightforward way to include this in the fuzzing process is to include the time of the
interrupts into the input as an offset from the virtual system start.
In addition, to support interrupts in the executor it is also desirable to make other com-
ponents of the fuzzer aware of the inputs for interrupt times. In particular, the mutators
based on system state information need to be aware of which part of the input is reserved
for the interrupt time. The mutator described in the last section, which combines parts of
the input, needs to be aware that the time inputs are consumed immediately. Additional
mutators can be constructed for the time input. The simplest one just shifts the time of
the interrupt activation into another state block in the graph, which would ensure the value
is meaningful and also helps explore all possible placements. Since hardware effects are
disregarded (see Section 5.1), shifting the interrupt this way has only a limited effect on
the preemption overhead, but the activated task can still interact with the global control
flow in arbitrary ways.

5.5 Fuzzing with known edge counts

Apart from exploring and discovering long-running inputs on its own, a fuzzer can in theory
be used to search a witness input for the result of a static timing analysis. This section
assumes that the number of executions of each CFG edge for the worst case is available as
an input for fuzzing, to generate inputs with similar numbers.
A straightforward genetic algorithm exploiting this assumption works by determining the

24 CHAPTER 5. CONCEPT

difference between the set of observed and given edges and only selecting the k most
similar (for some k) inputs for the next generation. One method to calculate the difference
between the sets is a variation of the mean square error method. Assuming oij is the
number of times the edge between basic blocks i ∈ B to j ∈ B was executed and tij is
the same for the set of edges from the worst-case analysis, the fitness can be defined as
fitness(o, t) = 1÷

∑
i∈B

∑
j∈B(oij − tij)

2.
Translating this algorithm to a fuzzer is not as straightforward. Since feedbacks in fuzzers
only determine whether to include an input to the corpus, in this case, the feedback needs
to include an input only if it has a fitness greater than all previous inputs. For selecting
the next input to mutate it is desirable to have multiple options to avoid getting stuck in
a local maximum. This can be solved using a corpus that weights the inputs according to
their fitness and chooses randomly, thereby preferring multiple of the fittest inputs. Such
a scheduler was not implemented for this thesis, but a simple queue was chosen instead.
Also, due to the lack of a suitable static analysis method to determine the targets this use
case was only evaluated using the edges of the known worst-case input to a program. Since
the prototype for this concept only consists of the described feedback function, it needs
no further elaboration in Chapter 6. Overall this novel use case is not the main focus of
this thesis but might become relevant in future works if compatible static analyzers are
available.

5.6 Resume

The previous sections present two coverage-based fuzzers aiming to maximize the execution
time of their targets. The simpler one uses a variation of the AFL’s feedback function with
a corpus scheduler aiming to maximize execution time. It is shown in Figure 5.1. A second,
more complex fuzzer is shown in Figure 5.4. Compared to the first one it traces the states
of the execution of an input and adds a scheduler and mutations to make use of this
additional information. Depending on the chosen configuration it can either use coverage
over complete state paths or individual states in the STG. All fuzzers can optionally let
the executor inject interrupts into the target, which simulates an important part of real
systems.

Chapter 6

Implementation

This chapter focuses on the implementation of the concepts explained in Chapter 5. The
implementation consists of an emulator running a target and the fuzzer around the emulator
controlling it as part of its fuzzing loop. The last major component is the target for the
fuzzer, which consists of an RTOS with multiple tasks forming an application. The first
section presents the components and their interaction, while the other sections detail how
they are implemented.

6.1 Overview

Figure 6.1 shows a detailed overview of the three components and their subcomponents in
an STG-based fuzzer. The approach presented in this thesis is implemented using LibAFL,
a modular fuzzing library [36]. It provides the overall architecture of observers, feedbacks,
corpus and the mutation stage, as well as an interface to a modified version of QEMU to
execute target code [9]. The RTOS used in this thesis is FreeRTOS [16].
The version of QEMU with LibAFL’s instrumentation is built as a library and exposes ad-
ditional functions to components called QemuHelpers. The example in Figure 6.1 contains
three of them. QemuEdgeHelper hooks into QEMU’s code generation to trace the flow
between basic blocks. It is a standard component in LibAFL. QemuSnapshotHelper resets
the state of the virtual machine after each run. It is specific to the implementation of this
thesis, because by default LibAFL works on user-mode emulation instead of fully emulated
machines. The last helper is QemuSysStateHelper, which is responsible for extracting state
information from the target OS at specified times. In the figure, it is triggered at a system
call in the target system.
Whenever an execution is complete the helpers expose their potential results to observers
for further processing. The MapObserver observes a bitmap that gets filled by the call-
backs from the EdgeHelper. This observer reconstructs them into a hash table of basic
block edges with execution counts, which is used in the fuzzing approach that takes known

25

26 CHAPTER 6. IMPLEMENTATION

Target

Include
if interesting

Corpus

Mutation Stage

Attach
Metadata

Input Metadata

RTOS Kernel

Task A
Prio 2
Blocked

Task B
Prio 1
Ready

Task C
Prio 1
Running

Notify(Task A, 1)

RTOS Kernel

Task A

Task B Task C

Call(...)

Snap-
shot

HavocMutators

Qemu

Edge

MapObserverMaxMapFeedback

ClockFeedback

ClockObserver

SysStateObserverSysState-/
GraphFeedback

State

GraphSnippetCross

RandomSnippet

InterruptShifter

Graph/State
Scheduler

Figure 6.1: A complete STG-based fuzzer for increasing the execution time. Blue components
are specific to the tracing, analysis and use of the STG. They either construct and work with
the graph or just complete state traces. All non-blue components also form an AFL-like execution
time-focussed fuzzer based on CFG edges. In this example, both the feedback mechanisms are used
in conjunction. Apart from the blue components, the ClockObserver and QemuSnapshotHelper

required implementation/modification to accommodate QEMU’s system-mode.

execution counts as input to compare with this hash table. The SysStateObserver takes
a series of state dumps produced by the StateHelper and processes them into a reduced
form. The last observer is the ClockObserver, which converts QEMU execution time from
instructions executed to nanoseconds and stores the resulting time. This is more precise
than LibAFL’s default, which has to measure host time because QEMU’s user-mode em-
ulation lacks precise measurement.
Once observers have performed their work the feedbacks take their information. Both
MaxMapFeedback and either SysStateFeedback or GraphFeedback rate if an input is inter-
esting according to the concepts described in Chapter 5. Along with ClockFeedback, they
attach certain metadata to the test case if it is considered interesting. Of those feedbacks,
MaxMapFeedback and ClockFeedback are based on default LibAFL components, while the
others are created from scratch for the work presented in this thesis.
Once a test case is executed and feedbacks have been processed the next input has to be
chosen. This is done by a GraphCorpusScheduler or StateCorpusScheduler using the

6.2. REAL-TIME OPERATING SYSTEM 27

metadata attached by the feedbacks. The schedulers used for this thesis are based on a
standard component from LibAFL, with modified prioritization.
Once chosen from the corpus the next input gets mutated in the mutation stage using mul-
tiple different mutators. LibAFL contains a default set of mutators that are also used by
AFL, called HavocMutators [6]. The mutators GraphSnippetCross, RandomSnippet and
InterruptShifter are using metadata about state transitions. The choice of mutators to
apply is performed by another scheduler already implemented in LibAFL.

6.2 Real-Time Operating System

One approach of this thesis is to estimate the WCRT of real-time systems using the states
of a whole system. A small real-time operating system is ideal to achieve this, because
it is easier to understand and the state has to capture fewer variables. Its authors de-
scribe FreeRTOS as a "market-leading RTOS for small microprocessors", which makes it
a valuable target for WCRT analysis tools [16]. It features fixed priority-based preemptive
scheduling. The following paragraphs describe how the FreeRTOS-based test application
receives input and what constitutes its state.

Input Model

To fuzz the system it needs to receive some input that influences the behavior of the sys-
tem. In real-world systems, there can be multiple sources of input. For example, sensors
can be read synchronously as part of a task. Another example is asynchronous commu-
nication over a universal asynchronous receiver transmitter (UART) component used for
serial communication.
The target system in this implementation is running under emulation. Theoretically, this
allows reproducing arbitrary synchronous and asynchronous inputs to the system trans-
parently by emulating the necessary input devices. In practice, the emulation of real input
devices for the system is out of scope for this thesis. The target system is built to simulate
a sensor reading from values in memory instead, written by the fuzzer. Whenever a task
reads input from this memory it increments a counter by the number of bytes read, which
allows the instrumentation to track in which states the input was read. Asynchronous
communication is simulated by handling a UART interrupt injected by the fuzzer. Details
on the interrupt generation and memory access can be found in Section 6.4.

Target-specific instrumentation

The fuzzer needs to gather some information from the RTOS which make up the state of
the system. FreeRTOS is very minimal and usually operates in a single address space. Its
kernel functions are directly exposed as library functions to the task code. Compared to

28 CHAPTER 6. IMPLEMENTATION

general-purpose OSs which use system calls and switch in execution mode this complicates
the notion of system states and transitions described in Chapter 2. This is because ABBs,
which are defined as single entry and exit regions do not necessarily end at the point where
the kernel functions are called but might extend inside them. From the implementation
side, this raises the issue of where the cutoff point for a state should be and how it can
be reliably intercepted by the instrumentation. Some options would be the entry points
of all kernel API functions, points where critical regions of the kernel are entered, or the
point where task switches occur. For this thesis, the interrupt handler which manages task
switches is used, because this single point can easily be intercepted in the emulator. The
consequence of choosing this point is, that each block of execution ending in a system state
starts with the handler and usually ends after the kernel API code was executed. This has
the positive side effect that a critical section just ended, and all data structures are in a
consistent state. A disadvantage is that since the last instruction before the task switch
handler is always in the kernel it hides which branches in the task were taken and what
function call caused the task switch. This issue is addressed by the emulator, which records
the outgoing address of each jump from application (task) code to the kernel functions.
The necessary separation is performed by injecting markers into the symbol table of the
FreeRTOS application during linking. These additional symbols mark the beginning and
end of the application codes region. Each jump that originates in the application code is
recorded. Section 6.4 describes in detail how the emulator instrumentation intercepts the
handler/jumps and which information it gathers from the system.

6.3 Fuzzer

The fuzzer is built using LibAFL, a fully modular library to build fast and scalable fuzzers
for custom targets [36]. It also comes with a library of ready-to-use modules for different
targets and fuzzing techniques. This modularity and ease of modification is the key factor
for choosing it as the framework for this thesis.

Modularity

LibAFL divides a fuzzer into multiple concepts, such as observers, executors, feedbacks, in-
puts, corpora and mutators [10]. Executors are an abstraction over some software that can
run the target. In the case of this thesis, it is a modified version of LibAFL’s QemuExecutor,
which is described in the next section. After an execution observers extract information
from the target and feedbacks rate the relevance of the result. If a result is interesting
the corresponding input gets added to the corpus of known inputs and eventually gets
mutated. A comprehensive overview of modular components used in the implementation
is given in Section 6.1.

6.3. FUZZER 29

System State Graph

During the execution of the target, callbacks from QemuSysStateHelper are called. One
such callback reads the current task control block (TCB) and the priority lists of executable
tasks from the emulator’s memory. Details on the extraction from memory can be found
in Section 6.4. After execution of the target, a list of this recorded information gets post-
processed by the SysStateObserver. The only information preserved from the run is a
list of state snapshots containing the following information:

• start_tick: Time when the task began executing

• end_tick: The time when the snapshot was taken and a different task will enter
execution

• last_pc: Last position of the program counter in the area of the application code

• input_counter: Counter how many bytes of the input have been read up until the
end of this block

• current_task: TCB of the current task, mainly contains its name, current- and base
priority, notification state and number of mutexes held

• ready_list_after: Priority sorted list of TCBs which are ready for execution

If the fuzzer uses the SysStateFeedback, it computes a hash of the list of state snapshots,
excluding the timing-related information. These hashes are looked up in a hash table and
if a previous entry is found the latest run will only be marked as interesting if its execution
time exceeds the one stored in the hash table, which gets updated in this case. If the hash
of the latest run is not found it will be rated as interesting and its execution time and trace
length will be saved. If a GraphFeedback is used instead of SysStateFeedback the decision
is more complex. First, this list of state snapshots gets inserted into the system state graph
by GraphFeedback. The graph consists of nodes that share most of the attributes of the
state snapshots, except the input-related properties like the input bytes and times, which
are collected as tuples in a list. During the update, the list of states is iterated while the
graph is traversed at the same time. Whenever the list contains a state which does not
correspond to a current graph node it gets inserted into the graph. Otherwise, the new
input information is compared to the list of inputs in the graph node. If the new input
shows a property which makes it interesting, such as taking the most/least amount of time
or being the longest/shortest input, it gets added to the node. Once the iteration ends and
if at least one node was updated or added the input is regarded as interesting and will be
added to the corpus.

30 CHAPTER 6. IMPLEMENTATION

Mutation

The three mutations described in Chapter 5 use the metadata of the test cases in combina-
tion with the graph generated by a GraphFeedback. Particularly the mutator which aims
to combine snippets of different runs (GraphSnippetCross) needs the information when
input was read. The states in the STG track which inputs triggered it and how far the
input was read in each case. This number is tracked by a variable that is updated by the
target system. By comparing the number of input bytes in a state with the number for its
predecessor it is possible to determine which part of the input field was read by the task in
this state block. The mutator combines these input snippets by traversing a path through
the STG and picking one of these input snippets at each state it visits. The assumption
behind this mutator is that a part of the input being read determines the behavior of the
application’s tasks mainly for the time until the next part of the input is read (as men-
tioned in Section 5.1). As such combining these snippets which are known to lead to the
same paths in the STG allows to form a new input for the same path. This new input may
have a longer total execution time than any of the other inputs on the path because it can
combine the snippets which cause the longest observed execution time in parts of the state
path. This means it is focused on exploiting the information in the STG to generate over-
all longer executing inputs. The other mutator which uses the snippets (RandomSnippet)
simply randomizes one snippet in an input to potentially trigger a different branch in the
STG or prolong parts of the execution. It is more focused on exploring the STG. The last
mutator that uses the STG (InterruptShifter) just selects a state block from the trace
and sets the interrupt input to trigger some time during that block.
These mutators are added to a list of mutators which also contains a pre-defined list of
mutators called HavocMutators, provided by LibAFL. This list contains a large collection
of byte- and multibyte-operators for swapping, copying, incrementing, deleting and more,
as well as cross mutating parts with other inputs. This cross-mutation is different from
the graph-based mutator, as that one targets specific inputs per state block in the graph.
The collection of mutators gets applied to the inputs by a mutation scheduler, which is
implemented in LibAFL and based on MOPT [35], a scheduler that tracks the effectiveness
of each mutator to optimize their selection probability.

6.4 Emulation

The default QemuExecutor executes user-mode binaries in QEMU’s user-mode emulation,
while the implementation in this thesis loads a kernel into a QEMU-emulated system.
In this case, QEMU is responsible for ensuring the target is in the same state for each
execution, loading fuzzing inputs and terminating the execution once the relevant part of
the code is done executing. The input handling (apart from interrupts) works mostly the

6.4. EMULATION 31

same in both user-mode and system-mode cases, where the input is written to a static array
in the target using QEMU’s memory-access functions. Resetting the target to the same
initial state is usually not necessary in user-mode because the targets are often libraries,
which are designed to be executed multiple times without keeping a state between runs.
The work presented in this thesis uses QEMU’s native snapshot feature to save and restore
the entire virtual machine for the system-mode. Terminating the finished execution is
handled using breakpoints in both user-mode and system-mode. Additionally, QEMU is
responsible to execute callbacks that gather information from the guest’s memory.

Guest Memory Access

To gather information from the target it is necessary to read from its memory and parse the
data structures for consumption in the fuzzer. The required information is present in the
target memory in the form of target-specific data structures. For FreeRTOS those include
a reference to the currently active task control block and a priority list of tasks ready for
execution. This presents three problems: First, the memory location of the structures
has to be found. Second, the structures need to be read from the emulator. Third, the
structures need to be interpreted, as they originate from a different architecture and refer
to a different address space.
The first problem is solved using the symbols found in the executable and linking format
(ELF) table of the target’s kernel, which contains the addresses of static pointers to all
relevant structures. The second problem is solved using QEMU’s API, which offers the
function cpu_physical_memory_read to read a variable amount of memory from the target
at a specified virtual address. The third problem is more complicated. The emulated target
in the work presented in this thesis was a 32bit ARM machine, while the host was a 64bit

AMD64 machine. Since the size definitions are different, the memory representation of
structs is not portable and they can not simply be interpreted by using the original c
header files. This problem was solved by an architecture-dependent prototype. It uses
bindgen 1 to create rust bindings for the struct definitions and then replaces the types in
the resulting definitions with size-equivalent types to the target architecture. Since the
alignment of the resulting struct is equivalent, this simple process allows the interpretation
of extracted memory as structs. A more generalized solution for this problem would use the
struct layout information in the debug information of the target generated by the target
compiler and stored in the DWARF format 2. Furthermore, even if a struct (and each
one its fields point) gets translated correctly it’s pointers still refer to a different address
space and can not be dereferenced. This is solved by inserting the struct and each struct
it points to (recursively) into a hash table with its virtual address as the key. This allows

1https://github.com/rust-lang/rust-bindgen
2https://dwarfstd.org/doc/dwarf_1_1_0.pdf

32 CHAPTER 6. IMPLEMENTATION

the host to follow the pointers in the snapshot through hash table lookups instead of direct
dereferencing.

Interrupts

As described in Chapter 5, interrupts at pre-determined times are part of the input to
the executor. More specifically this implementation assumes no more than one interrupt
within the first hyperperiod of the application. This is implemented by reserving at least
two bytes at the start of the input which get interpreted as the number of instructions to
execute until the interrupt gets fired. Those bytes are not copied into the VM memory.
The number of instructions is also offset by the known number of instructions it takes for
the RTOS to finish its basic setup and start the application. This cuts down the input
space of the interrupt time by eliminating times when interrupts are not enabled yet.
Timing the interrupt is done in QEMU using a ptimer, which waits for a specified virtual
time (a multiple of the virtual clock) to execute a callback function. The callback to raise
the interrupt request is dependent on the virtual hardware. This thesis focuses on ARM
processors using the Nested Vectored Interrupt Controller (NVIC), which supports setting
the desired interrupt to pending inside of QEMU. Inside the RTOS an interrupt handler
has to be registered for the activated IRQ.

Execution time measurements

The measured execution time in QEMU is taken by counting the executed instructions.
This is a simplified model compared to established timing analysis tools. This is unrealistic
for advanced processors, as it ignores memory latency and with it the associated effects
of caches, as well as effects on the processor’s pipeline, such as branch (mis-)predictions.
Since the goal of this approach is not to give guaranteed upper bounds but to find inputs
that approximate the worst possible path through the global whole system (see 5.1), this
level of abstraction is sufficient for a proof of concept. If the fuzzing approach proves its
usefulness, switching to an accurate emulator is possible.

Limitations

Due to an unknown reason snapshots that were taken after some execution time always
showed the same final execution time after resuming and finishing. Therefore, the overhead
of booting the RTOS is included in every run, which takes up the majority of the emulator
runtime in small examples. Another limitation of QEMU is that it does not simulate
hardware effects of the target platform. This is reflected in the system model this thesis
assumes (see Section 5.1), as well as the previous paragraph.

Chapter 7

Evaluation

This chapter details the evaluation of the fuzzer described in previous chapters, with the
goal of answering the guiding questions of this thesis. These are: Are coverage-guided
fuzzing techniques effective in discovering system inputs with long execution times? Can
the coverage guidance be improved by using the STG? Can know CFG-edge counts (e.g.
from an IPET-based static analysis) be used to guide the fuzzer to generate a witness input
with those edges (i.e. a worst-case input)?
Since there is no prior work available that is directly comparable, this evaluation only
uses comparisons amongst the techniques described in Chapter 5. To do this the first
section will describe the application used for testing the fuzzer. The following sections will
evaluate the performance of multiple fuzzer configurations in two different scenarios, one
with an asynchronous event and one without. In an additional last scenario, the fuzzer
tries to replicate pre-determined counts of control-flow edges, simulating what a fuzzer
could achieve in a hybrid scenario with a hypothetical IPET-based method.

7.1 Evaluation setup

The fuzzing loop was set up using LibAFL1 version 0.7.1, and its QEMU fork2. LibAFL’s
QEMU instrumentation was extended to allow running in system-mode. This meant adding
library hooks for LibAFL to save and reload the virtual machine, for injecting interrupts
and setting breakpoints to terminate the target upon finishing execution. Additional in-
strumentation was added to instrument generation and execution of jump instructions.
The instrumentation had to be backported to upstream QEMU3 version 6.1.1 because a
bug4 in version 6.2.0 prevented saving the virtual machine on certain emulated ARM ma-
chines.

1https://github.com/AFLplusplus/LibAFL/
2https://github.com/AFLplusplus/qemu-libafl-bridge/
3https://gitlab.com/qemu-project/qemu
4https://gitlab.com/qemu-project/qemu/-/issues/803

33

34 CHAPTER 7. EVALUATION

Start

Spor
Voter
ReplA
ReplB
ReplC

End

Sample
ReplA
Voter
ReplA
Sample
ReplB

Sample

Voter

Voter
ReplB
ReplC
Voter

ReplC

Sample
ReplA
Voter¸
ReplA
Sample
ReplB

Sample

Voter

Voter
ReplB
ReplC
Voter

ReplC

Sample
ReplA
Voter
ReplA
Sample
ReplB

Sample

Voter

Voter
ReplB
ReplC
Voter

ReplC

Sample
ReplA
Voter
ReplA
Sample
ReplB
Voter

Sample

Figure 7.1: System-State Graph for the test case, an example of TMR processing of inputs with
an optional third replicate. Nodes represent states with their task name shown. Multiple names
in one node indicate basic blocks of multiple states. It contains 11 different paths from start to
end. 4 of them are early terminations in the Samper, caused by insufficient input. 3 of them end
in the Voter after ReplB agrees with ReplA. 4 of them end in the Voter after ReplC resolves the
disagreement.

7.2. TEST CASE 35

The target was based on FreeRTOS5 version v202111. It was built from the demo6 appli-
cation for QEMU’s mps2-an385 model, which features an ARM Cortex M3. Details of the
application used for testing are described in the next section.
The evaluation of the fuzzers is performed on a quad-core AMD Ryzen™3 2200G with three
different fuzzer instances running in parallel. Each fuzzer instance runs the fuzzing loop
in a single thread and using one instance of QEMU. While LibAFL allows parallelizing
the fuzzing process easily and this was successfully tested with the fuzzers implemented
in this thesis, it was not used for the final evaluation. The reason for that is to avoid
any synchronization when writing out the execution times and producing a sequence of
executions where each one is based on all available information so far, without delays due
to synchronization of fuzzing states between instances. Parallel fuzzing would reach the
same number of executions quicker, but since multiple single-threaded fuzzers are run in
parallel this does not decrease the overall runtime of the evaluation.
The key metric to evaluate the fuzzers is their efficiency in discovering long execution
times. It is tracked by the value of the WOET over the number of executions, which is
a proxy for time. Since the fuzzing process does not have a stop criterion (in absence of
knowing the WCET or its input), all experiments need to have some limit. The time was
arbitrarily chosen as one hour, because the fuzzing progress has started to flatten off until
then in every case. Over a long enough time, any testing method which allows mutating
the input to completely random values would converge to the worst-case, as it can always
be randomly selected, even if that is unlikely. So the expectation is for the WOET of
every fuzzing method to converge towards the worst case, the speed of this convergence is
a result of the fuzzers efficiency.
During fuzzing all execution times get recorded. Each fuzzer starts with the same initial
input in the corpus but different seeds for the random number generator for all further
actions. Each configuration is run ten times to average the maximum execution time seen
up until a certain number of executions. Averaging of multiple results is done because the
progress and results of individual runs show a great variance, so the average in addition to
the standard deviation is more representative.

7.2 Test Case

The goal for the test case is to be small and present multiple ways to lengthen execution
times and reach new states. The test application which was chosen aims to mimic a real-
time system that reads a sensor and performs a computation on the value using triple
modular redundancy, with the third replicate being only called if the first two disagree.
On disagreement of all three replicates, the process will be re-tried three times, including

5https://www.freertos.org/index.html
6https://www.freertos.org/freertos-on-qemu-mps2-an385-model.html

36 CHAPTER 7. EVALUATION

data sampling. Once the voter receives two agreeing results the vote succeeds and the
hyperperiod ends and execution gets halted by the emulator. The idea is that the worst
execution time is reached only if the longest possible state trace gets reached and each value
processed gets optimized to maximize the duration of the processing in the replicates. This
scenario should allow the STG-based fuzzer to explore all paths and combine parts of the
worst-performing inputs for each retry into one long-running input. The combination of
parts is possible because parts of the input are largely independent, apart from triggering
state transitions.
In the application, this concept manifests as a sampler, voter and replicates A, B and
C. The sampler reads two bytes of input each time. Faults in replicates A and B are
triggered by one of the bytes being divisible by certain numbers. Those numbers change
per retry. The work performed by each replicate consists of iterations dependent on the
value read. This makes it necessary for the fuzzer to discover multiple magic numbers to
reach different system state paths which increases the difficulty of finding the worst path.
It also necessitates further optimization within a path or state. Figure 7.1 shows the full
state transition graph of the system without asynchronous events. Each node represents a
state and is labeled by the name of its task. Linear stretches in the graph (basic blocks)
have been summarized into nodes with multiple names for readability. It shows 11 different
paths through the whole execution. The worst case of the system is reached when each byte
in the input has the maximum value which is divisible by whatever number is demanded
by replicates A and B to fail. Early terminations from the sampler task are possible if the
input is too short. The worst-case inputs are known by construction and lead to the WCET
of 375707 without interrupts and 379033 with an interrupt at its worst-case position. The
worst-case position for the interrupt is where it activates a task at a point that causes the
highest possible scheduling overhead before becoming active. Preemption overhead due to
cache effects is not considered in the system model.
Overall this application offers a scenario where the fuzzer needs to first discover the next
stage of the retry and then needs to exploit an existing path to reach alternative inputs
per stage to reach higher execution times. If an asynchronous interrupt is injected, it will
unblock a task without data dependency on the rest of the system. This task has a higher
priority than the sampler, but nothing else. This leads to a scenario, where the maximum
delay from the interrupt can be caused by triggering it after the sampler is active but
before the samplers last activation. The newly activated task cause a priority inversion for
the next activation of the sampler and maximum scheduling overhead until then.
One last noteworthy detail about the test case is that most of the execution time (at least
347870 ticks) gets spent on setting up the OS and tasks. For this reason, the comparisons
in the following sections are only focused on the execution after the first application task
starts executing. Before then no input to the system is read or has any effects on the
execution.

7.3. CONFIGURATIONS FOR COMPARISON 37

7.3 Configurations for comparison

As explained in Chapters 5 and 6, multiple alternatives for each of the key fuzzer compo-
nents have been developed. Each of them uses a different combination of the components
from Section 6.1. This evaluation focuses on comparing the following interesting configu-
rations (common components are not listed):

• random: Black-box fuzzer using inputs

• afl_queue: MaxMapFeedback with a queue-based scheduler

• afl_mapmax: MaxMapFeedback with a time maximizing scheduler

• state: SysStateFeedback with StateCorpusScheduler

• state_afl: Like state, additional MaxMapFeedback

• graph: GraphFeedback with GraphCorpusScheduler

• graph_afl: Like graph, additional MaxMapFeedback

• graph_muta: Like graph, but includes mutators utilizing the graph

• graph_muta_afl: Combines graph_afl and gaph_muta

• known_edges: A fuzzer minimizing the difference to a set of target edges

7.4 Comparison of Fuzzing Methods

All following comparisons of the different configurations are based on average measurements
over ten iterations with one hour each. Comparison graphs have markings for the worst-
case execution time and the best execution time on the worst system path. The first set
of comparisons assumes no asynchronous interrupts as input.
Figure 7.2 shows a comparison of the three main fuzzing setups. It shows that the AFL-

and graph-based fuzzers perform almost the same, while the state-based fuzzer outperforms
them and reaches close to the worst-case input. All of them reach relatively close to the
worst-case and outperform random fuzzer by a wide margin. The random fuzzer did not
even reach the worst possible state trace, as shown in the graph by the fact that it did not
reach the lower bound set by the best case input which triggers the worst-case state-trace
(referred to as worst trace).

38 CHAPTER 7. EVALUATION

0 50000 100000 150000 200000

35
00

00
36

00
00

37
00

00

Execution

W
O

E
T

afl_mapmax
graph_muta
state
random
worst trace
worst case

Figure 7.2: Comparison of WOET over time for multiple configurations. The x-axis is the number
of inputs executed and the y-axis is the WOET until then. The state-based fuzzer outperforms the
AFL- and graph-based ones. All three of them outperform the random fuzzer by a wide margin.
The line called worst trace marks the execution time of the best-case input for the same state
trace as the worst-case input.

Figure 7.3 compares the different configurations of the graph-based fuzzer in detail. It
shows that additional feedbacks and mutators did not have a significant impact on the
performance. The same can be observed for state-based fuzzers in Figure 7.4, which shows
that the AFL-based feedback did not improve the state-based fuzzer. This is confirmed
by Table 7.1, as the maximum execution time of all variants is well within the standard
deviation of the base technique. The table also shows how close each WOET is to the
WCET, while only counting the time since the start of the application code after 347870
ticks. The state-based fuzzer performs best with over 98% of the applications WCET. The
lack of effects from the AFL-like feedback can be explained by the corpus size, which will
be discussed later in this section. The lack of effect from mutators on the other hand is
not as clear. One explanation for GraphSnippetCross not performing well is not picking
long-running snippets enough and also being limited by the number of available variants to
combine. That is because identical states on different branches of the graph are not merged.
It would also adversely affect the RandomSnippet mutator. The overall observation is that
the additional mutators for the graph did not improve the fuzzing performance.

7.4. COMPARISON OF FUZZING METHODS 39

0 50000 100000 150000 200000

35
00

00
36

00
00

37
00

00

Execution

W
O

E
T

graph
graph_afl
graph_muta
graph_muta_afl
random
worst trace
worst case

Figure 7.3: Comparison of graph-based coverage fuzzing with and without mutators and an
AFL-like feedback. Neither the additional feedback nor the mutators show a significant impact.
All of them reach close to the WCET.

configuration avg. WOET σWOET App
WOET
WCET

afl_mapmax 373662 963 92.65%
afl_queue 373620 1323 92.50%
graph 373581 933 92.36%
graph_afl 373917 1048 93.57%
graph_muta 373782 906 93.09%
graph_muta_afl 373521 1227 92.15%
known_edges 372838 1394 89.69%
state 375331 490 98.65%
state_afl 375359 366 98.75%
random 363574 1052 59.41%

Table 7.1: Average and standard deviation over max execution time during ten runs. The
percentage of WCET describes how close each WOET is to the WCET. System setup time is
discounted for this calculation, since application code starts after 347870 ticks.

40 CHAPTER 7. EVALUATION

0 50000 100000 150000 200000

35
00

00
36

00
00

37
00

00

Execution

W
O

E
T

state
state_afl
random
worst trace
worst case

Figure 7.4: Comparison of state-coverage fuzzing with and without additional AFL-like feedback.
There is no significant difference visible. Both reach extremely close to the WCET.

7.4. COMPARISON OF FUZZING METHODS 41

0 50000 100000 150000 200000

35
00

00
36

00
00

37
00

00

Execution

W
O

E
T

afl_queue
afl_mapmax
random
worst trace
worst case

Figure 7.5: Comparison of AFL-like fuzzing with and without prioritizing scheduler. No signifi-
cant difference between the two is visible. Both reach close to the worst case.

As seen in Figure 7.5, the AFL-based fuzzers did not show a significant difference when
using a simple queue corpus or a time maximizing scheduler, which may be explained by
the extremely low number of total corpus elements for this fuzzer. This can be seen in
Table 7.2. The low count of corpus elements de-emphasizes the importance of a scheduler
because there are few to no corpus elements that have been overtaken in the number of
every edge.
The low corpus size for the AFL-like feedback is surprising. Tests confirm that inputs which
increase loop bounds do increase the edge execution counts accordingly. The feedback is
set to reward every increase in the execution count, even of a single edge. One possible
explanation for this observation is the difficulty of maximizing the total number of loop
executions. The total number of execution for a loop does not only depend on one part
of the input but the global control flow, which raises the risk of getting stuck in a local
maximum. A concrete example for this might look like this: Assuming the loop in replicate
A gets exercised 40 times during a run that terminated without a retry. Another run might
exercise it 10 times on the first try and 25 times on a retry. From a global perspective, the
second run is more valuable, because it leads to the longer system state path. Meanwhile,
the first one might still be considered more interesting by the fuzzer, because it had a
greater number of edge executions and potentially also execution time. This could lead a
fuzzer to discover inputs that trigger all STG paths only once, but not discover increased

42 CHAPTER 7. EVALUATION

edge counts on them because previous local maxima overshadow the discoveries on the new
path.
The graph-based method and the mostly AFL-based method are extremely close to each

Configuration avg. corpus σcorpus

afl_mapmax 8,1 0,88
state 94,2 18,20
graph 79,1 4,68

Table 7.2: Average corpus size and its standard deviation for the three main configurations

other. This is surprising since the graph-based method is an extension of the state-based
method. As seen in Table 7.2, the state-based method even adds more elements to its corpus
overall. One possible explanation for this phenomenon is, that the increased number of
inputs that the graph scheduler regards as relevant at the same time slows down the fuzzing
process. This is caused by the large number of states caused by every branch in the graph
and could be mitigated in future works by merging states from different branches.

The previous figures focussed on the WOET values over time, but it is also interesting
to observe the overall distribution of observed execution times because it shows how well
the fuzzer prioritizes long executing inputs. Figures 7.6a and 7.6b show histograms of
the execution times for the afl_queue and state configurations. High frequencies of
long-running executions are desired, but neither of them shows this. While the overall
distribution is very similar, Figure 7.6b shows four distinct clusters of execution times,
separated by valleys. Those clusters are presumably caused by the system-state transition
graph and the fact, that the state fuzzer targets each path separately. As described in
Section 7.2, the application can retry the calculations multiple times if certain conditions
are met. The more pronounced clusters in Figure 7.6b may be explained by the fuzzer’s
scheduler, which continues to fuzz all paths, even after longer ones have been discovered.
Overall the configuration using unique end-to-end paths in the system transition graph
performed the best. It discovered progressively worse paths quickly and reached the overall
maximum the fastest. This shows that this basic degree of system-state awareness can
guide a fuzzer to the worst paths relatively quickly, while previous coverage-based fuzzers
are also able to reach close to the worst cases. The graph-based mutators have shown no
significant advantage over random mutators in a graph-based fuzzer, which itself also did
not significantly outperform the AFL-based feedback and scheduling.

7.4. COMPARISON OF FUZZING METHODS 43

afl_queue

Execution times

D
en

si
ty

350000 355000 360000 365000 370000 375000

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

(a) Distribution of execution times in the afl_queue fuzzer. The large majority of executions had execution
times below 355000 ticks.

state

Execution times

D
en

si
ty

350000 355000 360000 365000 370000 375000

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

(b) Distribution of execution times in the state fuzzer. The large majority of executions had timed below
355000 ticks. Multiple bumps in the distribution are visible, presumably corresponding to the major retry
steps in the application.

44 CHAPTER 7. EVALUATION

7.5 Fuzzing with interrupts

0 50000 100000 150000 200000

35
00

00
36

00
00

37
00

00
38

00
00

Execution

W
O

E
T

afl_mapmax
afl_queue
graph_muta_afl
graph_muta_afl_int
known_edges
random
state_afl
state_afl_int
worst case

Figure 7.7: Comparison of WOET over time for multiple configurations with active interrupts.
The int suffix represents configurations with a mutator affecting interrupts. State- and graph-based
fuzzers perform close to each other, while the AFL-based configurations perform much worse.

The previous section focussed only on the input directly consumed by the target ap-
plication while disabling interrupts. As can be seen in figure 7.7, when enabling interrupts
and firing them based on the input, the performance of the AFL-like fuzzer suffers from
worse performance than with disabled interrupts. All other variants meanwhile perform
very similarly to each other and again reach close to the new worst-case execution time.
The on average best performing fuzzer was state_afl, which reached an average maximum
of 377485 ticks during one hour of fuzzing. The manually constructed WCET was 379033
ticks, while the application code of the system only starts execution at 347870 ticks. All
execution before that point consists of the initialization of the RTOS and the application
tasks. This means the fuzzer found a case that causes the application to reach 95.0% of
its WCET on average, while random fuzzing on average reaches about 56.4% of the worst-
case during one hour of fuzzing. afl_mapmax reached an average maximum of 371465 ticks,
which covers around 75.7% of the worst-case execution time. As Table 7.3 shows, the size
of the corpus is massively increased for all fuzzers, which emphasizes the importance of the

7.6. SCALABILITY 45

Configuration avg. corpus σcorpus

afl_mapmax 340.3 2.31
state 1365.3 70.65
graph 2392.3 111.46

Table 7.3: Average corpus size and its standard deviation for the three main configurations with
an interrupt included in the input

corpus scheduler to prioritize the most promising inputs. The even worse performance of
the afl_queue configuration confirms that the corpus scheduler for CFG edges does indeed
increase performance, but was insignificant in the case without interrupts. The likely ex-
planation for the performance degradation of the CFG edge-based fuzzers is the increased
number of unique edges resulting from the interrupts. Inputs that interrupt the target in
a new block produce new edges and thus create new interesting inputs. This observation
is consistent with prior work on kernel fuzzing [33]. The same effect is not as pronounced
for the graph and state-based fuzzers, because the implementation of the interrupt handler
only activates a task that can diverge the state path in a limited number of states.

7.6 Scalability

Testing-based methods are generally not able to cover the full input space, which makes the
fuzzing process open-ended and the question of scalability difficult to answer. The main
limit to scalability of the fuzzers described in this thesis is the number of corpus elements,
as storing many relatively uninteresting test cases slows the fuzzer down and consumes
memory. While culling can be used to reduce it, the scheduling algorithms already fo-
cus on a subset of the corpus. The size of this preferred subset differs between fuzzing
methods and still presents a scaling limit under culling. Tables 7.2 and 7.3 show only the
gross corpus size but are still useful to reason about the scalability of the approaches. The
edge-based fuzzer is not scalable when used in a scenario with enabled interrupts, due to
the large number of edges generated by the interrupt handling. The corpus sizes of the
other fuzzers increased less dramatically. Interrupts could increase the preferred subset
in an edge-based fuzzer to about O(WCET) +O(edgesCFG) inputs, as the interrupt can
cause a new edge to be created every few instructions. This effect can be seen in the
growth of the average corpus size by a factor of around 42 for afl_mapmax, while both
other fuzzers increased their corpus sizes by much smaller factors (30 for graph and 14
for state): The graph-based fuzzer as presented in this thesis limits its preferred set by
O(pathsSTG ∗ statesSTG), because all branches contain duplicate states. The system-path
based fuzzer focuses on only O(pathsSTG) in its corpus. Another possible coverage-based
fuzzing approach would be to merge diverging branches of the STG and use the edges of

46 CHAPTER 7. EVALUATION

the resulting graph for coverage, which would scale even better with a preferred around
O(edgesSTG). Since this was not part of this thesis the best remaining method is based
on the state path coverage, which scales with O(pathsSTG).
System-aware static timing analyzers - while not directly comparable - also see the complex-
ity of the analysis increase with the number of STG paths [1]. One of the key advantages
of using a measurement-based analysis is that the number of paths to consider shrinks, as
only feasible paths are encountered. This is similar to the scaling of system-aware static
timing analysis methods, except they still need to consider some infeasible paths through
the STG, while fuzzing discovers only feasible paths.
Overall the scaling potential of fuzzing for timing analysis is promising. Future work in
system-aware fuzzing has the potential for improving scalability by merging STG branches,
developing better prioritization heuristics and deploying well-known fuzzing strategies like
culling of the corpus.

7.7 Searching Witness Inputs

0 50000 100000 150000 200000

35
00

00
36

00
00

37
00

00

Execution

W
O

E
T

known_edges
afl_mapmax
state
random
worst trace
worst case

Figure 7.8: Comparison of fuzzing for known edges with other methods without interrupts

The last fuzzing approach presented in this thesis is focused on guiding the fuzzer using
a feedback function that rewards decreasing differences between the observed CFG edges
and ones produced using a hypothetical compatible static analysis. While there are a few

7.8. RESUME 47

static timing analysis methods available that analyze the whole system, they can not be
used for comparison, as their output is not directly comparable to the edges measured using
the emulator. Thus, the target edges for fuzzing are taken from the execution of the true
worst-case input instead. The result was that this fuzzer variant did not find the worst-
case input during the one-hour test. As seen in Figure 7.8 on average its generated inputs
do not outperform the state-based fuzzer or the AFL-based one during fuzzing without
interrupts. The corpus grew approximately as large as the AFL-based fuzzers during this
test. This is not surprising, because most of the time both feedbacks reward increasing
the number of times an edge gets executed unless the MSE decreases overall or the edge
was not included in the worst case. During fuzzing with interrupts the corpus of the edge
targeting fuzzer does increase very little, as the edges caused by the interrupt are generally
not in the target set. This causes it to outperform the AFL-based one, as seen in Figure
7.7.

7.8 Resume

This section presented a small real-time system hosting a simple application that processes
sensor input and is protected by triple modular redundancy. Multiple fuzzer configurations
based on the concepts of this thesis were evaluated against this example, aiming to trigger
multiple retries of the redundancy, while maximizing the time each replicates spends on the
processing. The fuzzer using the coverage of system-state paths was the most effective one.
Withing one hour of fuzzing it increased the observed execution times of the application
in the system to over 98% of the worst-case in a scenario without interrupts and 95% with
interrupts, compared to random testing which reached around 59% and 56% respectively.
The fuzzer based on STG-node coverage was less effective and its specialized mutators did
not show improvements over the base mutators either.
With these results the main questions of this thesis can be answered as follows: First off,
repurposing existing coverage-guided fuzzing techniques is possible and can lead to high
execution time test cases. In the tested cases, it produced much higher execution times on
average than what random testing would produce within the same time. Secondly, fuzzing
guided by STG paths proved to be even more effective than the CFG-edge-based one.
When interrupts are activated the situation is similar, but the fuzzer based on CFG-edges
performs much worse. For the last question about using the edge-frequencies provided by
another analysis, guiding the fuzzer using known worst-case edge numbers was unable to
find the worst-case witness and overall did not outperform the state-path-guided fuzzer.

48 CHAPTER 7. EVALUATION

Chapter 8

Discussion and Conclusion

This chapter summarizes the work and discusses its limitations and directions for future
work.

8.1 Discussion

This thesis presents a system-state-aware fuzzing approach to generate inputs that cause
running executions of a real-time system. The prototype which was evaluated in Chapter
7 used a simplified hardware model and made assumptions about interrupt handling, as
well as implementation-specific assumptions about the system state. This Section discusses
these assumptions and provides starting points for future research.
The main causes for increased execution time in this thesis were the overall control flow
enabled by the input and preemption caused by interrupts. Since the execution model was
simplified, it did not consider hardware effects, such as caches and pipelines. Hardware
effects can be included in the future by using a cycle-accurate emulator of a target machine.
This would likely sacrifice emulation performance and potentially require re-writing code
for basic block analysis, which was implicitly performed in QEMU by the separation in
translation blocks. Modeling of caches would also open new opportunities for graph-based
mutators. A mutator could focus on inserting an interrupt at a point where it will cause
the current task to be preempted due to lower priority. This would be a useful heuristic
to increase execution times, as preemption of the current task causes cache eviction of its
working set, which needs to get re-loaded at a later time to complete the preempted task.
As discussed in 3, the point of preemption (or migration) in code is important because the
active working-set size changes over the lifetime of a task. This could also be incorporated
into a more advanced heuristic that uses knowledge of the evolution of a task’s working-set
size. It may move an interrupt that causes a preemption in the execution of a low-priority
task at the point where its active working set is at its maximum, to cause the largest
preemption-overhead.

49

50 CHAPTER 8. DISCUSSION AND CONCLUSION

The graph-based fuzzer did not outperform the simpler state trace-based fuzzer. This
might be caused by duplication of states between branches, which introduces more nodes
for test cases to cover that are ultimately on the wrong branches. It is possible to merge
the graph and fuzz over edges instead, which should increase the scalability and bring it
close to CFG-based coverage-guided fuzzing.
In the graph settings, the mutators also did not show advantages, which might be down
to multiple reasons. On one hand, some mutators are focussed on exploiting relative ad-
vantages. Without state merging relative advantages within a single trace are limited. On
the other hand, a possible explanation is that the MOPT scheduler might decrease the
probability of these mutators being used due to low initial success.
The STG is already used for a simplified taint analysis, which relies on the assumption
that the behavior of each state block is mostly determined by the last part of the input
which was read. This assumption can be eliminated in future work if real taint analysis
using symbolic execution is used.
Symbolic execution can also be used for concolic fuzzing. Concolic fuzzing would allow
deriving new state paths by solving SMT formulas about the branch predicates. In ag-
gregate, such a system could be classified as a hybrid timing analysis, but instead of the
established pipeline of static timing analysis, supplemented by timing information from
testing this would do the reverse. Like any approach which attempts to cover all CFG
paths, it would still run into similar scalability problems as full static timing analysis.
Another aspect left out is the portability between different RTOSes. The current prototype
is focused on FreeRTOS. The changes made inside it to accommodate the emulated envi-
ronment, namely the way inputs are consumed from memory that is written by the fuzzer,
should be very portable to other library OSes, as long as their compiled kernels contain
ELF-symbols to find the input fields for the fuzzer. More complex systems like Linux with
user-space and protected mode separation would require a different mechanism to insert
input data, using virtual devices emulated using QEMU for example. The changes neces-
sary to the emulator instrumentation are more complex, as the OS-specific data structures
are not portable. They require custom code to extract the state per target OS. Generating
struct bindings from the layout information contained in debugging information adhering
to the DWARF standard should also be possible. This solution would be more portable
than the prototype implementation, which requires the generation of struct definitions and
manual post-processing of them to fit the host memory layout.
As mentioned in Chapter 7, CFG edges are created when interrupt handlers are triggered.
Other kernel-focussed fuzzers have encountered similar problems [33], their workaround
could be implemented similarly to how the detection of application against kernel code
works. Checking if edges lead to the interrupt handler could exclude those edges.

8.2. SUMMARY 51

8.2 Summary

This thesis proposed three techniques to leverage coverage-guided fuzzing to find inputs
with long execution times for real-time systems. The first one is based on the common
control flow edge coverage popularized by AFL. The second one traces the system state
of the target system, which consists of many system facts, such as the active and ready
tasks, their priorities, notification states and the number of held mutexes. The fuzzer
uses coverage over these traces and execution times to determine if an input is interesting
and to select the next input for mutation. The third fuzzer conceptualized goes one step
further and uses the state traces to build a state transition graph. It then uses coverage
of nodes (states) in the graph and additionally uses information from the states during
mutation. At last one non-coverage-based fuzzer was proposed in this thesis, which uses
pre-determined target control flow edges from a (theoretical) IPET analysis to search a
witness input for said analysis.
The concepts were implemented using the modular fuzzer library LibAFL and its fork
of QEMU. To host a real-time system the instrumentation in QEMU was changed from
user-mode to system-mode with the state reset between runs being handled using QEMU’s
snapshot functions. Additionally, support for injecting interrupts based on precise time
inputs was implemented.
The evaluation was performed against a small FreeRTOS system running multiple tasks
which implement a simple workflow. In this case, triple modular redundant processing of
some data being part of the fuzzing input. The results from testing showed that in absence
of interrupt handling all three base fuzzers performed well in the sense that they quickly
produced inputs that reached close to the worst-case execution time while performing
significantly better than testing of random inputs. With enabled interrupt handling the
performance of the edge-based fuzzer decreased dramatically. The most likely explanation
is the increased number of edges produced by the interrupt handler, which is consistent
with observations made by other researchers focussing on fuzzing kernels [33]. The overall
best-performing fuzzer was the one based on state traces, instead of the state transition
graph. Edges resulting from executing the known worst-case input were used for evaluating
the fuzzer targeting known edges. The fuzzer was unable to find the worst-case input and
did not even find worse inputs than the coverage-based fuzzers.
The main questions of this thesis were whether coverage-guided fuzzing can be effective in
searching long executing inputs for a real-time system and whether this can be improved
using system state-based techniques. The results show that both of them can be answered
positively. However, an efficient search for witness inputs using edge frequencies from a
theoretical IPET analysis could not be demonstrated.

52 CHAPTER 8. DISCUSSION AND CONCLUSION

8.3 Future Work

Since the results of the fuzzers turned out positive, an obvious next step is to move the
execution mode closer to real hardware. This could be achieved by exchanging QEMU for
a cycle-accurate emulator of the target system or even real hardware. This would make
the results more comparable to existing MBTA tools.
Another direction would be to improve the system state analysis. The coverage of STG
nodes did not produce the anticipated improvement over system state traces, despite the
finer granularity it offers. Merging graph nodes from different branches and using coverage
of STG edges would shrink the graph and increase the similarity with CFG coverage for
potentially better guidance and scalability.
The wider field of fuzzing research has many techniques to offer which might be useful
for timing analysis. Concolic fuzzing for example is a white-box technique that leverages
symbolic execution and an SMT solver to construct inputs that exercise new control flow
paths. This might also be applicable on a system-wide level to exercise new STG paths.
Other grey-box techniques such as deeper taint analysis might also be promising, as they
are less complex than white-box techniques, yet effective.

List of Figures

2.1 Abstract overview of LibAFL-based fuzzer. Arrows indicate information
flow. Overall a test case is selected, mutated into a new input, executed,
observed, rated and potentially added to the corpus or solutions. 5

2.2 The static analysis WCET pipeline. Inputs consist of the binary program,
loop bounds and an abstraction of the target micro-architecture. Figure
based on [21]. 9

5.1 Abstract overview of LibAFL-based fuzzer which maximizes execution time.
Arrows indicate information flow. Blue highlights are execution time fo-
cussed changes compared to a generic AFL-like fuzzer. The feedback has to
reward all increasing edge-counts and the scheduler has to prioritize long-
running cases. 19

5.2 Abstract overview of a fuzzer using system-state information. The real-time
system shown in the middle is in a state where some Task C is running and
just sent a notification to a higher priority Task A using the RTOS API. An
observer collects those states. 20

5.3 Example STG of a small triple modular redundant application. Three paths
are possible depending on the availability of data for sampling and disagree-
ment between replicates A and B. Priorities from high to low: Voter, ReplA,
ReplB, ReplC, Sampler. PC address annotations below names signify a dif-
ference in local control flow, which cause changes in the global control flow.
. 21

5.4 A System-State aware fuzzer to maximize execution time. Arrows indicate
information flow. Differences to Figure 5.1 are highlighted in blue. 22

53

54 LIST OF FIGURES

6.1 A complete STG-based fuzzer for increasing the execution time. Blue com-
ponents are specific to the tracing, analysis and use of the STG. They ei-
ther construct and work with the graph or just complete state traces. All
non-blue components also form an AFL-like execution time-focussed fuzzer
based on CFG edges. In this example, both the feedback mechanisms are
used in conjunction. Apart from the blue components, the ClockObserver

and QemuSnapshotHelper required implementation/modification to accom-
modate QEMU’s system-mode. 26

7.1 System-State Graph for the test case, an example of TMR processing of
inputs with an optional third replicate. Nodes represent states with their
task name shown. Multiple names in one node indicate basic blocks of
multiple states. It contains 11 different paths from start to end. 4 of them
are early terminations in the Samper, caused by insufficient input. 3 of them
end in the Voter after ReplB agrees with ReplA. 4 of them end in the Voter
after ReplC resolves the disagreement. 34

7.2 Comparison of WOET over time for multiple configurations. The x-axis is
the number of inputs executed and the y-axis is the WOET until then. The
state-based fuzzer outperforms the AFL- and graph-based ones. All three
of them outperform the random fuzzer by a wide margin. The line called
worst trace marks the execution time of the best-case input for the same
state trace as the worst-case input. 38

7.3 Comparison of graph-based coverage fuzzing with and without mutators and
an AFL-like feedback. Neither the additional feedback nor the mutators
show a significant impact. All of them reach close to the WCET. 39

7.4 Comparison of state-coverage fuzzing with and without additional AFL-like
feedback. There is no significant difference visible. Both reach extremely
close to the WCET. 40

7.5 Comparison of AFL-like fuzzing with and without prioritizing scheduler.
No significant difference between the two is visible. Both reach close to the
worst case. 41

7.7 Comparison of WOET over time for multiple configurations with active
interrupts. The int suffix represents configurations with a mutator affecting
interrupts. State- and graph-based fuzzers perform close to each other, while
the AFL-based configurations perform much worse. 44

7.8 Comparison of fuzzing for known edges with other methods without interrupts 46

Bibliography

[1] C. Dietrich, P. Wägemann, P. Ulbrich, and D. Lohmann, “Syswcet: Whole-system
response-time analysis for fixed-priority real-time systems (outstanding paper)”, in
Proceedings of the 23nd IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), IEEE, 2017, pp. 37–48.

[2] R. Wilhelm, J. Engblom, A. Ermedahl, et al., “The worst-case execution-time problem—
overview of methods and survey of tools”, ACM Transactions on Embedded Comput-
ing Systems, vol. 7, no. 3, 36:1–36:53, May 8, 2008, issn: 1539-9087. doi: 10.1145/
1347375.1347389.

[3] F. Mueller and J. Wegener, “A Comparison of Static Analysis and Evolutionary
Testing for the Verification of Timing Constraints”, Real-Time Systems, vol. 21, no. 3,
pp. 241–268, 2001, issn: 0922-6443. doi: 10.1023/A:1011132221066.

[4] U. Khan and I. Bate, “WCET analysis of modern processors using multi-criteria
optimisation”, in Proceedings of the 1st International Symposium on Search Based
Software Engineering, IEEE, 2009, pp. 103–112.

[5] M. Zalewski, American fuzzy lop, version 2.57b, Google, Jun. 30, 2020. [Online].
Available: https://github.com/google/AFL (visited on 05/25/2022).

[6] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++ : Combining Incremental
Steps of Fuzzing Research”, in Proceedings of the 14th USENIX Workshop on Offen-
sive Technologies (WOOT ’20), USENIX Association, Aug. 2020. [Online]. Available:
https://www.usenix.org/conference/woot20/presentation/fioraldi.

[7] J. Schneider, “Why You Can’t Analyze RTOSs without Considering Applications
and Vice”, Nov. 24, 2002.

[8] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of the Art”, IEEE
Transactions on Reliability, vol. 67, no. 3, pp. 1199–1218, Sep. 2018, issn: 1558-1721.
doi: 10.1109/TR.2018.2834476.

[9] F. Bellard and multiple others, QEMU. [Online]. Available: https://www.qemu.org/
(visited on 05/25/2022).

55

https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1023/A:1011132221066
https://github.com/google/AFL
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://doi.org/10.1109/TR.2018.2834476
https://www.qemu.org/

56 BIBLIOGRAPHY

[10] A. Fioraldi and D. Maier. “The LibAFL book”. (May 12, 2022), [Online]. Available:
https://aflplus.plus/libafl-book/libafl.html (visited on 05/12/2022).

[11] M. T. Yourst, “PTLsim: A cycle accurate full system x86-64 microarchitectural simu-
lator”, in Proceedings of the IEEE International Symposium on Performance Analysis
of Systems & Software, IEEE, 2007, pp. 23–34.

[12] K. C. Wang, “Embedded Real-Time Operating Systems”, in Embedded and Real-Time
Operating Systems, K. Wang, Ed., Cham: Springer International Publishing, 2017,
pp. 401–475, isbn: 978-3-319-51517-5. doi: 10.1007/978-3-319-51517-5_10.

[13] J. W. S. Liu, Real-time Systems. Englewood Cliffs, NJ, USA: Prentice Hall PTR,
2000, isbn: 0-13-099651-3.

[14] S. K. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively scheduling hard-real-time
sporadic tasks on one processor”, pp. 182–190, Dec. 1990. doi: 10.1109/REAL.1990.
128746.

[15] F. Reghenzani, G. Massari, and W. Fornaciari, “The Real-Time Linux Kernel”, ACM
Computing Surveys (CSUR), Feb. 21, 2019. doi: 10 . 1145 / 3297714. (visited on
07/02/2022).

[16] Amazon Web Servcies. “FreeRTOS - Market leading RTOS for embedded systems.”,
FreeRTOS. (May 11, 2022), [Online]. Available: https://www.freertos.org/index.
html (visited on 05/11/2022).

[17] F. E. Allen, “Control flow analysis”, SIGPLAN Not., vol. 5, no. 7, pp. 1–19, Jul.
1970, issn: 0362-1340. doi: 10.1145/390013.808479. [Online]. Available: https:
//doi.org/10.1145/390013.808479.

[18] C. Dietrich, M. Hoffmann, and D. Lohmann, “Cross-Kernel Control-Flow–Graph
Analysis for Event-Driven Real-Time Systems”, ACM SIGPLAN Notices, Jun. 4,
2015. doi: 10.1145/2808704.2754963.

[19] P. Puschner, “Zeitanalyse von Echtzeitprogrammen”, Ph.D. dissertation, Technische
Universität Wien, Institut für Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vi-
enna, Austria, 1993.

[20] S. Edgar and A. Burns, “Statistical analysis of wcet for scheduling”, in Proceedings of
the 11nd IEEE Real-Time Systems Symposium (RTSS ’01), Dec. 2001, pp. 215–224.
doi: 10.1109/REAL.2001.990614.

[21] C. Ferdinand and R. Heckmann, “aiT: Worst-Case Execution Time Prediction by
Static Program Analysis”, in Building the Information Society, ser. IFIP Interna-
tional Federation for Information Processing, R. Jacquart, Ed., vol. 156, Boston,
MA: Springer US, 2004, pp. 377–383, isbn: 978-1-4020-8157-6. doi: 10.1007/978-
1-4020-8157-6_29.

https://aflplus.plus/libafl-book/libafl.html
https://doi.org/10.1007/978-3-319-51517-5_10
https://doi.org/10.1109/REAL.1990.128746
https://doi.org/10.1109/REAL.1990.128746
https://doi.org/10.1145/3297714
https://www.freertos.org/index.html
https://www.freertos.org/index.html
https://doi.org/10.1145/390013.808479
https://doi.org/10.1145/390013.808479
https://doi.org/10.1145/390013.808479
https://doi.org/10.1145/2808704.2754963
https://doi.org/10.1109/REAL.2001.990614
https://doi.org/10.1007/978-1-4020-8157-6_29
https://doi.org/10.1007/978-1-4020-8157-6_29

BIBLIOGRAPHY 57

[22] Y.-T. S. Li and S. Malik, “Performance Analysis of Embedded Software Using Im-
plicit Path Enumeration”, in Proceedings of the ACM SIGPLAN Workshop on Lan-
guages, Compilers, & Tools for Real-Time Systems, (La Jolla, California, USA),
ser. LCTES ’95, New York, NY, USA: Association for Computing Machinery, 1995,
pp. 88–98, isbn: 978-1-4503-7308-1. doi: 10.1145/216636.216666.

[23] D. Kästner, M. Pister, S. Wegener, and C. Ferdinand, “TimeWeaver: A Tool for Hy-
brid Worst-Case Execution Time Analysis”, in Proceedings of the 19th International
Workshop on Worst-Case Execution Time Analysis (WCET 2019), S. Altmeyer, Ed.,
ser. OpenAccess Series in Informatics (OASIcs), vol. 72, Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2019, 1:1–1:11, isbn: 978-3-95977-118-4.
doi: 10.4230/OASIcs.WCET.2019.1.

[24] S. Schuster, P. Wägemann, P. Ulbrich, and W. Schröder-Preikschat, “Proving real-
time capability of generic operating systems by system-aware timing analysis”, in
Proceedings of the 25th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS ’19), IEEE, 2019, pp. 318–330.

[25] S. Schuster, P. Wägemann, P. Ulbrich, and W. Schröder-Preikschat, “Annotate once
– analyze anywhere: Context-aware WCET analysis by user-defined abstractions”,
in Proceedings of the 22nd ACM SIGPLAN/SIGBED International Conference on
Languages, Compilers, and Tools for Embedded Systems, New York, NY, USA: Asso-
ciation for Computing Machinery, Jun. 22, 2021, pp. 54–66, isbn: 978-1-4503-8472-8.
doi: 10.1145/3461648.3463847.

[26] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H. Anderson, “LIT-
MUSˆRT : A Testbed for Empirically Comparing Real-Time Multiprocessor Sched-
ulers”, in Proceedings of the 27th IEEE International Real-Time Systems Symposium
(RTSS ’06), Dec. 2006, pp. 111–126. doi: 10.1109/RTSS.2006.27.

[27] P. Denning, “Working sets past and present”, IEEE Transactions on Software Engi-
neering, vol. SE-6, no. 1, pp. 64–84, 1980. doi: 10.1109/TSE.1980.230464.

[28] J. A. Brown, L. Porter, and D. M. Tullsen, “Fast thread migration via cache working
set prediction”, in IEEE 17th International Symposium on High Performance Com-
puter Architecture, 2011, pp. 193–204. doi: 10.1109/HPCA.2011.5749728.

[29] W. Lunniss, S. Altmeyer, C. Maiza, and R. I. Davis, “Integrating cache related pre-
emption delay analysis into edf scheduling”, in Proceedings of the 19th Real-Time
and Embedded Technology and Applications Symposium (RTAS ’13), 2013, pp. 75–
84. doi: 10.1109/RTAS.2013.6531081.

[30] P. Raffeck, P. Ulbrich, and W. Schröder-Preikschat, “Work-in-progress: Migration
hints in real-time operating systems”, in Proceedings of the 40th IEEE International
Real-Time Systems Symposium (RTSS ’19), IEEE, 2019, pp. 528–531.

https://doi.org/10.1145/216636.216666
https://doi.org/10.4230/OASIcs.WCET.2019.1
https://doi.org/10.1145/3461648.3463847
https://doi.org/10.1109/RTSS.2006.27
https://doi.org/10.1109/TSE.1980.230464
https://doi.org/10.1109/HPCA.2011.5749728
https://doi.org/10.1109/RTAS.2013.6531081

58 BIBLIOGRAPHY

[31] T. Klaus, P. Ulbrich, P. Raffeck, et al., “Boosting Job-Level Migration by Static
Analysis”, in Proceedings of the 15th Workshop on Operating Systems Platforms for
Embedded Real-Time Applications (OSPERT ’19), D. Lohmann and A. Lackorzynski,
Eds., Jul. 2019, pp. 17–22.

[32] P. Rafeck, W. Schröder-Preikschat, and P. Ulbrich, “Revisiting Migration Overheads
in Real-Time Systems: One Look at Not-So-Uniform Platforms”, in Proceedings of the
16th Workshop on Operating Systems Platforms for Embedded Real-Time Applications
(OSPERT ’22), D. Lohmann and R. Mancuso, Eds., Jul. 2022, pp. 41–48.

[33] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz, “kAFL: Hardware-
Assisted Feedback Fuzzing for OS Kernels”, in Proceedings of the 26th USENIX Se-
curity Symposium (USENIX Security ’17), Vancouver, BC: USENIX Association,
Aug. 2017, pp. 167–182, isbn: 978-1-931971-40-9. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity17/technical-sessions/presentation/

schumilo.

[34] S. Schumilo, C. Aschermann, A. Abbasi, S. Wörner, and T. Holz, “Nyx: Grey-
box hypervisor fuzzing using fast snapshots and affine types”, in Proceedings of the
30th USENIX Security Symposium (USENIX Security ’21), 2021. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity21/presentation/
schumilo.

[35] C. Lyu, S. Ji, C. Zhang, et al., “MOPT: Optimized Mutation Scheduling for Fuzzers”,
presented at the 28th USENIX Security Symposium (USENIX Security 19), 2019,
pp. 1949–1966, isbn: 978-1-939133-06-9.

[36] D. Maler, A. Floraldi, D. Zhang, et al., LibAFL, the fuzzer library. Advanced Fuzzing
League ++, May 11, 2022. [Online]. Available: https://github.com/AFLplusplus/
LibAFL (visited on 05/12/2022).

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://github.com/AFLplusplus/LibAFL
https://github.com/AFLplusplus/LibAFL

*Please be aware that solely the German version of the affidavit ("Eidesstattliche Versicherung")
for the Bachelor’s/ Master’s thesis is the official and legally binding version.

Eidesstattliche Versicherung

(Affidavit)

Name, Vorname
(surname, first name)

Matrikelnummer
(student ID number)

Bachelorarbeit
(Bachelor’s thesis)

Masterarbeit
(Master’s thesis)

Titel
(Title)

Ich versichere hiermit an Eides statt, dass ich die
vorliegende Abschlussarbeit mit dem oben genannten
Titel selbstständig und ohne unzulässige fremde Hilfe
erbracht habe. Ich habe keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt sowie
wörtliche und sinngemäße Zitate kenntlich gemacht.
Die Arbeit hat in gleicher oder ähnlicher Form noch
keiner Prüfungsbehörde vorgelegen.

I declare in lieu of oath that I have completed the
present thesis with the above-mentioned title
independently and without any unauthorized
assistance. I have not used any other sources or aids
than the ones listed and have documented quotations
and paraphrases as such. The thesis in its current or
similar version has not been submitted to an auditing
institution before.

 Ort, Datum
(place, date)

Unterschrift
(signature)

Belehrung:
Wer vorsätzlich gegen eine die Täuschung über
Prüfungsleistungen betreffende Regelung einer
Hochschulprüfungsordnung verstößt, handelt
ordnungswidrig. Die Ordnungswidrigkeit kann mit einer
Geldbuße von bis zu 50.000,00 € geahndet werden.
Zuständige Verwaltungsbehörde für die Verfolgung
und Ahndung von Ordnungswidrigkeiten ist der
Kanzler/die Kanzlerin der Technischen Universität
Dortmund. Im Falle eines mehrfachen oder sonstigen
schwerwiegenden Täuschungsversuches kann der
Prüfling zudem exmatrikuliert werden. (§ 63 Abs. 5
Hochschulgesetz - HG -).

Die Abgabe einer falschen Versicherung an Eides statt
wird mit Freiheitsstrafe bis zu 3 Jahren oder mit
Geldstrafe bestraft.

Die Technische Universität Dortmund wird ggf.
elektronische Vergleichswerkzeuge (wie z.B. die
Software „turnitin“) zur Überprüfung von Ordnungs-
widrigkeiten in Prüfungsverfahren nutzen.

Die oben stehende Belehrung habe ich zur Kenntnis
genommen:

Official notification:
Any person who intentionally breaches any regulation
of university examination regulations relating to
deception in examination performance is acting
improperly. This offense can be punished with a fine of
up to EUR 50,000.00. The competent administrative
authority for the pursuit and prosecution of offenses of
this type is the Chancellor of TU Dortmund University.
In the case of multiple or other serious attempts at
deception, the examinee can also be unenrolled,
Section 63 (5) North Rhine-Westphalia Higher
Education Act (Hochschulgesetz, HG).

The submission of a false affidavit will be punished
with a prison sentence of up to three years or a fine.

As may be necessary, TU Dortmund University will
make use of electronic plagiarism-prevention tools
(e.g. the "turnitin" service) in order to monitor violations
during the examination procedures.

I have taken note of the above official notification:*

 Ort, Datum
(place, date)

Unterschrift
(signature)

Berger, Alwin 192971

Emulator-based Fuzzing of Operating-system State-transition Graphs

Dortmund, 11.07.22

Dortmund, 11.07.22

	Introduction
	Motivation
	Research questions
	Structure

	Background
	Fuzzing
	Classification of fuzzers
	Influential example: AFL

	Emulation
	Real-Time Operating Systems
	System States
	Worst-case timing analysis

	Related Work
	Problem Analysis
	Concept
	System Model
	Fuzzing for execution time
	Utilizing the state transition graph
	Fuzzing for Interrupts
	Fuzzing with known edge counts
	Resume

	Implementation
	Overview
	Real-Time Operating System
	Fuzzer
	Emulation

	Evaluation
	Evaluation setup
	Test Case
	Configurations for comparison
	Comparison of Fuzzing Methods
	Fuzzing with interrupts
	Scalability
	Searching Witness Inputs
	Resume

	Discussion and Conclusion
	Discussion
	Summary
	Future Work

	List of Figures
	Bibliography
	Affidavit

